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We discuss the particle physics basis for models of natural in&ion with pseudo-Nambu- 
Goldstone bosons and study the consequences for large-scale structure of the non-scale-invariant 
density fluctuation spectra that arise in natural inllation and other models. A pseudo-Nambu- 
Goldstone boson, with a potential of the form V(d) = A4[1*cos(4/f)], can naturally give rise to 
an epoch of intlation in the early universe, if f - Mpl and A u &VT. Such mass scales arise in 
particle physics models with a gauge group that becomes strongly interacting at the GUT scale. 
We work out a specific particle physics example based on the multiple gaugino condensation 
scenario in superstring/supergravity theory. We then study the cosmological evolution of and 
constraints upon these in6ation models numerically and analytically. To obtain sufEcient inflation 
with a probability O(1) and a high enough post-inflation reheat temperature for baryogenesis, we 
require f 2 0.3Md. 

The primordial density fluctuation spectrum generated by quantum fluctuations in 4 is a non- 
scale-invariant power law, P(k) o( k”*, with n , u 1- (M&/Srf ), leading to more power on large 
length scales than the n, = 1 Harrison-Zeldovich spectrum. (For the reader primarily interested 
in large-scale structure, the discussion of this topic is presented in Section IV and is intended to 
be nearly self-contained.) We pay special attention to the prospects of using the enhanced power 
to explain the otherwise puzzling large-scale clustering of galaxies and clusters and their flows. 
We find that the standard cold dark matter (CDM) model with 0 .$ na 5 0.6 could in principle 
explain these clustering data, such as the APM galaxy angular correlation function. However, 
the microwave background anisotropies recently detected by COBE imply such low primordial 
amplitudes for these CDM models (that is, bias factors bs 2 2 for n. s 0.6) that galaxy formation 
would occur too late to be viable and the large-scale galaxy velocities would be too small. In fact, 
combining the COBE results with the requirement of sticiently early galaxy formation (z,f > 2) 
leads to the constraint r?, 2 0.63, which corresponds to f 2 0.3Mpt for natural inflation (virtually 
the same as the sufficient reheating constraint). A comparable bound, n. 2 0.72, arises by 
combining COBE with the inferred large-scale flows. For other inflation models, such so extended 
inflation and tiation with exponential potentials, which give rise to initial fluctuation spectra 
that are power laws through the 3 decades in wavelength probed by large scale observations, 
gravity waves can produce a significant fraction of the COBE signal (while they are negigible 
for natural inflation); for these models, our corresponding COBE constraints on n, are therefore 
tighter, n, > 0.76 (from tsf > 2) and n: > 0.89 (from large-scale flows). Combined with other 
constraints on the Brans-Dicke parameter (which effectively imply nd < 0.77 - 0.84), this leaves 
little or no room for most extended inflation models. Chaotic i&lation models with power law 
potentials have n. 2 0.95 over observable wavelengths and so are not affected. Although no single 
value of the spectral index n. in the standard cold dark matter model universally fits the data, a 
value ns 5 1 may be combined with other variations of the standard CDM framework to explain 
the large-scale structure. For example, if the baryon density is as high as Rb = 0.1 or the Hubble 
parameter sslow as HQ = 40 km/sec/Mpc, then n, w 0.7 with CDM would be at least marginally 
consistent with the large-scale clustering data, COBE, large-scale velocities, and the requirement 
of su5cisntly early structure formation. 



I. INTRODUCTION 

In recent years, the inflationary universe has been in a state of theoretical limbo: it is a 
beautiful idea in search of a compelling model. The idea is remarkably elegant[l]: if the early 
universe undergoes an epoch of quasi-exponential expansion during which the Robertson-Walker 
scale factor a(t) increases by a factor of at least e 60, then a small causally connected region grows 
to a su&iently large size to explain the observed homogeneity and isotropy of the universe, to 
dilute any overdensity of magnetic monopoles or other unwanted relics, and to flatten the spatial 
hypersurfaces, Q m 8aGp/3H2 + 1 (where the density p includes all forms of stress-energy, 
including the vacuum [the cosmological constant], and R is the Hubble parameter). As a bonus, 
quantum fluctuations during inflation can causally generate large-scale density fluctuations, which 
are required for galaxy formation[2]. 

During the inflationary epoch, the energy density of the universe is dominated by the (nearly 
constant) potential energy density V(4) associated with a slowly rolling scalar field 4, the in- 
flaton[3]. The combination of two constraints - that the universe inflate su5ciently, and that 
perturbations in the cosmic microwave background radiation (CMBR) are not produced in excess 
of observations - requires the potential of the infiaton to be very flat. Consequently, the field 4 
must be extremely weakly self-coupled, with effective quartic self-coupling constant X+ < O(lO-*) 
[4] (and with X+ < lo-‘* in most models). 

Density tluctuatione in in6ation are thus a blessing for astronomers but a curse for particle 
physicists, because the theory must contain a very small dimensionless number. Attitudes con- 
cerning this problem vary widely among inflation theorists: to some’this represents unacceptable 
‘6ne tuning’; to others, it is not an issue of great concern because we know there exist other 
small numbers in hysics, like lepton and quark Yukawa couplings gy N lo-’ and the ratio 
M~..IJMP~ - ” lo- Partly as a consequence of the latter view, in recent years, it has become 
customary to decouple the inflaton completely from particle physics models, to specify an ‘infiaton 
sector’ with the requisite properties, with little or no regard for its physical origin. 

Nevertheless, it is meaningful and important to ask whether such a small value for X4 is 
in principle unnatural. Clearly, the answer depends on the particle physics model within which 
4 is embedded and on one’s interpretation of nattialnsss. A small parameter X is said to be 
“technically natural” if it is protected against large, radiative corrections by a symmetry, i.e., if 
setting X - 0 increases the symmetry of the system [5]. For example, in this way, low energy su- 
persymmetry might protect the small ratio Muc.~ /Mpl. However, in technically natural inflation 
models, the small coupling.& while stable against radiative corrections, is itself unexplained, 
and is generally postulated (i.e., put in by hand) solely in order to generate successful inliation. 
Technical naturalness is a useful concept for low energy effective Lagrangians, like the electroweak 
theory and its supersymmetric extensions, but it points to a more fundamental level of theory for 
its origin. Since inflation takes place relatively close to the Planck scale, it would be preferable to 
find the inflaton in particle physics models which are ‘strongly natural”, that is, which have no 
small numbers in the fundamental Lagrangian. 

In a strongly natural gauge theory, all small dimensionless parameters ultimately arise dy- 
namically, e.g., from renormalization group (or instanton) factors like exp(-l/a), where a is a 
gauge coupling. In particular, in an asymptotically free theory, the scale Ml, at which a logarith- 
mically running coupling constant becomes unity, is Ml N M2e-‘l”, where M2 is the fundamental 
mass scale in the theory. In some models, the infiaton coupling X+ arises from a ratio of mass 
scales, A+ - (MJM2)q; for example, in the models to be discussed below, q = 4. As a result, in 
such models, X4 is naturally exponentially suppressed, X4 N e-ela. 

An example of this kind, namely, a scalar field with naturally small self-coupling, is provided 
by the axion [S], a light pseudoscalar which arises in models introduced to solve the strong CP 
problem. In axion models, a global U(1) symmetry is spontaneously broken at some large mass 
scale f, through the vacuum expectation vahwof a complex scalar field, (Q) = f exp(ia/f)/& 
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(In tbis case, @ has the familiar Mexican-hat potential, and the vacuum is a circle of radius f.) 
At energies below the scale f, the only relevant degree of freedom is the msssless axion field (1, 
the angular Nambu-Goldstone mode around the bottom of the @ potential. However, at a much 
lower energy scale, the symmetry is explicitly broken. For example, the QCD axion obtains a msss 
from non-perturbative gluon configurations (instantons) through the chiral anomaly. When QCD 
becomes strong at the scale AQCD N 100 MeV, instanton effects give rise to a periodic potential 
of height N A&, for the axion. In ‘invisible’ axion models [7] with canonical Peccei-Quinn scale 

fPQ - lOI* GeV, the resulting axion self-coupling is extremely small: X,, w (Aoc~/fp~)~ N 
10sJz. This small number simply reflects the hierarchy between the QCD and Peccei-Quinn 
scales, which arises from the slow logaritbmic.rmming of aqua. 

Pseudo-Nambu-Goldstone bosons (PNGB’s) are ubiquitous in particle physics models: they 
arise whenever an approximate global symmetry is spontaneously broken. We choose PNGB’s as 
our candidates for the role of the idaton. We assume a global symmetry is spontaneously broken 
at a scale f, with soft explicit symmetry breaking at a lower scale A. These two scales, f and A, 
completely characterize the model and will be specified by the requirements of successful itiation 
- namely, a s&cent number of e-folds of inflation, reheating to a high enough temperature 
to allow baryogenesis, and an acceptable amplitude and spectrum of density fluctuations. The 
resulting PNGB potential is generally of the form 

V(4) = A’[1 f cos(N+/f)] (1.1) 

We will take the positive sign in Eq.(l.l) (this choice has 110 effect on our results) and, unless 
otherwise noted, assume iV = 1, so that the potential, of height ZA’, has a unique minimum at 
# = rf (we assume the periodicity of 4 is 2rj). In a previous paper [S] (hereafter Paper I), three 
of us showed that, for f N MPI u lOlo GeV and A N &UT -, 1Ol5 GeV, the PNGB field 4 can 
drive inflation; in this case, the effective quartic coupling is X+ m (A/f)4 u 10-13, as required. In 
this paper, we study this class of models and their implications in greater depth. 

We note that, in some cases, the potential of Eq.(l.l) is the lowest order approximation to 
a more complicated expression. For inflation, the important ingredients are the height (- xl) 
and width (- f) of the potential, and the curvature in the vicinity of its extrema, which is 
determined by m$ = AZ/f. Thus, while our treatment will focus on the specific form (l.l), our 
conclusions hold for more general forms of the PNGB potential which have the same overall shape 
(that is, same height, width, and curvature at the extrema; in addition, we assume V(4) varies 
monotonically between 4 = 0 and *f, that is, we ignore higher order ripples, which might affect 
the perturbation spectrum over a small range of wavelengths). 

In section II, we discuss the PNGB in&&m scenario in the context of particle physics models. 
As noted above, a succssaful inflation scenario does not consist simply of a scalar field potential 
that does the trick; in addition, the parameters of the potential, in this case the requisite msss 
scales j and A, must have a natural origin in plausible particle physics models. PNGB potentials 
with these mass scales do arise naturally in particle physics models. For example, in the hidden 
sector of superstring (supergravity) theories, if a non-Abel& sub oup(s) remains unbroken, the 
running, gauge coupling can become strong at the scale N 1014 - 10 Y 5 GeV; indeed, it is hoped that 
the resulting gaugino condensation may play a role in determining the string coupling constant 
and possibly in breaking supersymmetry [9]. (W e note that, in such models, the only fundamental 
scale is the Planck scale, f N Mpl, and the lower scale A is generated dynamically.) In this case, as 
discussed in Section II, the role of the PNGB inflaton could be played by the “model-independent 
axion” (the imaginary part of the dilaton) [lo]. 

In Section III, we provide a detailed analysis of the cosmological evolution of the PNGB 
tiaton field. By and large, the numerical results therein co&m the analytic treatment of paper 
I. In addition, we also discuss in detail constraints on the maSs scales arising from the requirement 
of sutlicient reheating, the density fluctuation amplitude, and the requirement that inflation be 
probable in the sense of initial (and final) conditions. We also discuss the issue of initial spatial 
gradients in the inflaton field and how they may be damped out prior to inflation. 
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In the standard lore of inflation, the adiabatic density fluctuations generated have a nearly 
scale-invariant Harrison-Zeldovich spectrum. This general statement can be violated, and an 
arbitrary perturbation spectrum ‘designed’, but, in most models, at the cost of 5ne-tuning several 
parameters of the irmaton potential (or adjusting coupling constants in models with multiple 
scalar fields) [ll]. In the simplest natural inflation model with a potential given by Eq. (l.l), we 
have no freedom to introduce arbitrary features into the perturbation spectrum. Nevertheless, 
ss discussed in sections III.C.2 and IV.A, the density fluctuations generated in this model can 
deviate significantly from a scale-invariant spectrum: for f 5 3Mp1/4, the perturbation amplitude 

at horizon-crossing grows with mass scale M as (6p/p)hor u Mm:1’4srf’. Thus, the primordial 
power spectrum for density 5uctuations (at fixed time) is a power law, (]6p(k)/~]~) w k”., with 
spectral index n, cz 1 - (&$/87rf2). Th e extra power on large scales (compared to the scale- 
invariant n, = 1 spectrum) can have important implications for hugs-scale structure, of particular 
interest since the scale-invariant spectrum with cold dark matter (CDM) appears to have too little 
power on large scales. Other inflation models can also give rise to non-scale-invariant power law 
spectra. Therefore, in section IV, we discuss tests of non-scale-invariant power law initial spectra 
with adiabatic perturbations and CDM, including the galaxy angular correlation function inferred 
from deep photometric surveys, the CMBR anisotropy detected by COBE, large-scale peculiar 
velocities, the power spectrum inferred from redshift surveys of IRAS galaxies, and the epoch of 
galaxy formation. 

II. PARTICLE PHYSICS MODELS 

There are a number of ways in which massive pseudo-Nambu-Goldstone bosons with the 
requisite msss scales discussed above may play a role in particle physics models. In this section, 
we schematically outline only a few of them. The basic idea is to build a model with a global 
symmetry spontaneously broken at a large mass scale f N Mpl, which gives rise to one or more 
massless Nambu-Goldstone bosoms. There are then several ways to introduce explicit breaking of 
(some or all of) the global symmetry at the scale A u MGUT, resulting in potentials for the would- 
be Goldstone modes. Ideally, the lower scale emerges dynamically, so that no small parameters 
are introduced. 

The most familiar example of a pseudo-Nambu-Goldstone boson in nature is the pion. Here, 
the global chiral symmetry is spontaneously broken by quark condensates at the QCD scale, 
(qg) u A&., u (100 MeV)3, and explicitly broken by quark masses, m, N md z 10 MeV. In 
the case of the pion, these two scales are close together (they differ by a factor of about ten), 
so the pion gains a mass comparable to the QCD scale, rn: u m,(qq)/fz - (100 MeV)2. By 
contrast, in invisible axion models [I], the scales of spontaneous and of explicit symmetry breaking 
are separated by many orders of magnitude: the spontaneous symmetry breaking scale fpo is 
elevated close to the GUT scale, while the explicit breaking scale is u Aqcn. The resulting 
hierarchy of scales yields a very light axion, rnt N m,(tjq)/f&; for example, m, = 10s6 eV for 
fpg z lOi GeV. For the PNGB intlaton, we will be interested in models with a relatively modest 
hierarchy between the spontaneous and explicit globalsymmetry breaking scales, A/f m 10e4. 
Such a ratio of scales is intermediate between the csse of the pion (A/f - 0.1) and the invisible 
QCD axion (A/f N lo-i3). 

A. PNGBs from Condensates 

In this section, we illustrate how such an intermediate maSs hierarchy can arise. We consider 
an action that contains coupled scalar and fermion fields and exhibits a chiral U(1) symmetry. 
Spontaneous breaking of the chiral symmetry takes place at energy scale f (for imlation, f w Md); 
massless Nambu-Goldstone bosons arise at this scale. We illustrate an additional feature that may 
be attractive although not necessary to our model: if the scalar field couples non-minimally to 
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gravity, it may dynamically generate Newton’s constant at this scale (induced gravity) [12]. Next, 
we discuss several ways in which the symmetry can be explicitly broken at a lower energy scale 
u A (for inflation, A - lo-‘Msr). At this scale, the Nambu-Goldstone boson acquires a mass, 
in a manner similar to the axion or schizon [13] (although at higher mass scale). We focus on 
axion-like scenarios, in which a gauge group becomes strong at the scale w A. We briefly discuss 
how this may arise in technic&r models and then, in somewhat more detail in Sec. IIB, in 
superstring models. 

1) Spontaneous Symmetry Breaking 

Taking our cue from the axion [14], we first describe a simple model which implements the 
mechanism described above. Consider the fundamental action for a complex scalar field @ and 
fermion 111, coupled to gravity: 

s = 
/ 

&z&j [gfl”a,@-a,a - V(WG) - .fW@R + i?jrv,$J - (h$L$RQ + h.c.)] (2.1) 

where R is the Ricci scalar, and +(RJ,) are respectively right- and left-handed projections of 
ihefeui; field, $(,(RJ) = (1 f r5)$,/2. Th is action is invariant under the global chiral U(1) 

+,h)r. + ei0121jr& , tl’R - 8aJ2$R , 4! -) 8-a , (2.2) 

analogous to the Peccei-Quinn symmetry in r&on models. 

We assume the global symmetry is spontaneously broken at the energy scale f in the usual 
way, e.g., via a potential of the form 

v(,@,)=A(@**-q)2 ( 

where the scalar self-coupling X can be of order unity. The resulting scalar field vacuum expecta- 
tion value (vev) is (a) = f ei*lf/JZ. 

In this model, spontaneous symmetry breaking dynamically generates Newton’s constant for 
Einstein gravity [12]. At scales below f, the non-minimal coupling of the scalar field to the 
curvature induces the canonical Einstein Lagrangian, ,f(Q*Q)R = ([f2/2)R = R/lG?rG, if the 
coupling e satisfies 

+$. (2.4) 

Since inflation requires f w Mpi, the above relation holds for t of order unity, a natural value 
for this dimensionless coupling. We note that generation of the Planck scale in this way is not a 
necessary ingredient of the models discussed below: since inflation takes place after @ reaches its 
vev, we could simply replace the non-minimal coupling term in Eq.(2.1) with the usual Einstein 
Lagrangian. On the other hand, since the mass scale f must be comparable to Mpl for successful 
inflation, it is natural and economical to tie it directly to the gravitational scale. Since the 
gravitational sector is canonical once the temperature of the universe drops below the scale f, we 
resume ordinary Einstein gravity from now on. 

Below the scale f, we can neglect the superheavy radial mode of @ (r&,&l = X’/2f N Mpl) 
since it is so massive that it is frozen out. The remaining light degree of freedom is the angular 
variable 4, the Goldstone boson of the spontaneously broken U(1) (one can think of this as the 
angle around the bottom of the Mexican hat described by eqn. (2.3)). We thus study the effective 
chid Lagrangian for #I: 

1 
&.ff = ~“c#&#J + i?j7”0,,@ - (7Tlf&,JRei*‘f + h.c.) . 
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Here the induced fermion mass me 3 hf/fi; for example, for values of the Yukawa coupling 
10e3 5 h 5 1, the fermion mass is in the range MGUT < m,y 5 Mpl. The global symmetry is now 
realized in the Goldstone mode: Leff is invariant under 

& - eioi211,L , ?+bR -* C?-iaf2$,ll , 4 + 4 + tif (2.6) 

At this stage, 4 is maaslesa because we have not yet explicitly broken the chiral symmetry. 

2) Explicit Symmetry Breaking 

Several options exist for explicitly breaking the global symmetry and generating a PNGB 
potential at a mess scale w A several orders of magnitude below the spontaneous symmetry 
breaking scale f. In a c&s of &-symmetric models studied by Hill and Ross[l3], one adds a bare 
fermion maSS term mr+L$R to /&f, which presumably arises from another sector of the theory 
(just as quark masses in QCD are generated in the electroweak sector). The combination of terms 
involving me and mr generates a l-loop potential for 4 of the form (l.l), with A2 N memr; a 
synopsis of these ‘schison’ models is given in refs.[13,15]. 

For the rest of this discussion, we focus on the simplest mechanism for explicit symmetry 
breaking, by analogy with the QCD axion: dynamical chlral symmetry breaking through strongly 
coupled gauge fields. Suppose the gauge symmetry of the effective theory below the scale f N Mpl 
is a product group, Gi x Gr, where Gr is a standard grand unified group (e.g., Es or SU(5)) 
which spontaneously breaks down to the standard model at some scale M~(rr. In other words, 
Gi describes the physics of ordinary quarks and leptons (and their heavier brethren) while Gs 

. . might describe a ‘hidden sector’. At the Gr u&cation scale, the Gr gauge coupling is small 
(perturbative unification). On the other hand, let Gr be au asymptotically free non-abelian 
gauge theory which becomes strongly interacting at a scale n comparable to the GUT scale. In 
addition, we assume that II, transforms non-trivially under Gs (11, carries Gc-‘color’). Starting 
with a perturbative Gs gauge coupling at the Planck scale, a2(Mpl) = gz(MpJ/4r (which is, 
say, comparable to ai(Mp~)), the scale n emerges from the renormalization group, 

~=MpIexp(b~~p,,) , 
where the renormalization group constant b, determines the lowest order term in the expansion of 
the &function of Gs, b(g) = -b,g.j/(4r)2-.... For example, for Gs = SU(N) and no light matter 
fields with Gr charge, then be = 3N; if there are N matter fields (one generation) with masses 
m < 6 in the fundamental representation of Ga, then bo = 2N. For reasonably large groups, 
and therefore large 50, the gauge coupling can run sufhciently fast to generate (c N MGUT. As 
examples, for az(Mpl) = l/30 and Gs = SU(5) we find K N 3 x 1014 GeV if there are no light 
(m 5 Mpl) fermions transforming under Gz; on the other hand, with N light fermions, the same 
value of n arises for the larger group Ga = SU(9). 

Since II, is charged under Gs, we expect chiral dynamics to induce a fermion condensate, 
btw N n3. (We wsume the condensate can be rotated to be real; the extra phase it involves 
is irrelevant for our discussion). From eqn.(2.5), the condensate explicitly breaks the global 
symmetry, giving rise to a potential for the angular PNGB field #, 

V(4) = Re[mo(~L$&“‘f] = meK3 cos(b/f) . (2.8) 

This has the form of eqn.(l.l), with A4 = rrrc~~ = hfG‘/d. For inflation, we require A N MGO~. 
Such an energy scale can arise in at least two ways: (i) w N !c N MG~JT; this requires the 
Yukawa coupling h N 10w4, or (ii) ms w Mpl, h = O(l), and n is slightly below the GUT scale, 
K N lO-‘M~ur. We indicated above that the running of the coupling constant for group Gs 
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may indeed provide such a value for n. For this second choice of parameters, we do not need to 
introduce any small coupling constants in the fundamental Lagrangian near the Plan& scale: the 
small ratio A/f emerges dynamically and is “strongly natural”. 

Although this model may be cosmologically appealing, we do not want to propose a new 
strongly interacting gauge sector in particle physics solely to generate an inflaton potential. Hap 
pily, there is well-founded particle physics motivation for an additional gauge group which becomes 
strong at the GUT scale, and this idea has a distinguished history in the particle physics literature. 

One possibility is that G2 is a teticolor group, and that $J carries both G1 and GZ charge. 
[In this case, 4 can couple through a $I - $ - +-triangle diagram to ordinary particles (e.g., 
gluons and photons); this may be advantageous in that it leads to reheating of the ‘ordinary’ 
sector of quarks and leptons. We thank S. Dimopoulos for making this point to us.] Then, one 
must introduce a source for spontaneous breaking of the standard G1 GUT group. Here, one 
may contemplate two possibilities: If the ($$) condensate is a G1 singlet (this may happen even 
though $J carries GI charge), then G1 must b_e broken by the usual Eggs mechanism or some 
equivalent. Alternatively, if the condensate ($11) is G - 1 non-singlet, it can spontaneously break 
G1 at a scale n N ?&VT, by analogy with technicolor models. Ifit can be implemented, the latter 
choice would be most economical: a single mechanism would give rise to both GUT symmetry 
breaking and inflation, and the only fundamental scalar (a) in the theory has Planck mass. This 
value of the mass for a scalar is natural, and in principle no small parameters would need to be 
introduced in the theory. 

B. A Superstring Model: “Supernatural” Inflation 

A second motivation for a gauge group which becomes strongly interacting at the GUT 
scale comes from superstring theory[l6]. In these models, the gauge symmetry of the effective 
supergravity theory below the Planck scale is again a product group, G1 x G2, where G1 = GGVT 
contains the standard.model and G2 describes the hidden sector; for example, in the original 
heterotic string model, G1 x G2 = Es x EA. 

In the effective field theory arising from super&rings, an important role is played by the 
complex scalar field S. The real part of this field, ReS, is the dilaton; the imaginary part ImS 
is the ‘model-independent axion’. In string theory, the value of the dilaton determines the string 
coupling constant gs through the relation[l’l] (Re(S)) = l/g:. Since ga is related by factors of 
O(1) to the gauge couplings g,,(MpI) of the effective field theory at the Planck scale (a labels the 
gauge group G,), the dilaton expectation value determines gauge couplings as well. In particular, 
a value for the dilaton in the range (ReS) 3 R&O c- 1.5 - 2.5 yields a phenomenologically viable 
G1 gauge coupling at the GUT scale, ~I(J’&uT) u l/45. If this theory is to have predictive 
power and time-independent constan@ of nature, one would expect that the dilaton potential 
V(R.eS) has a minimum in this range. In perturbation theory, the dilaton (and axion) potential 
V(S) is protected by supersymmetry: if supersymmetry is unbroken at tree level, then V(S) 
vanishes to all linite orders in perturbation theory, leaving the gauge couplings indeterminate 
[18]. However, if the hidden sector G2 is an asymptotically free non-abelian group, it will become 
strongly interacting, leading to condensation of gaugims (fermion supersymmetric partners of the 
gauge bosons) at a scale (XX) N M~Ie-B’z/~~%M*I). Thr ough the relation between ReS and the 
string coupling constant above, this corresponds to a non-perturbative potential for the dilaton 
of the form V(S) IX escs. As a consequence, the imaginary part of the field, the axion partner 
of the dilaton, obtains a potential of the form (l.l), V(ImS) CC cos(ImS). Our interest in this 
scenario derives from the fact that the ‘model-independent’ axion could in principle play the role 
of the idaton in natural itiation 1191. 

Although nonperturbative effects in the hidden sector can generate a potential for the dilatdn, 
an exponentially falling potential clearly will not by itself stabilize the dilaton in the desired range 
noted above: instead ReS runs away to infinity, yielding a free string theory. Additional physics is 
needed to help pin the dilaton at the appropriate minimum; we describe this further below. Here, 
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we mention that a second important role in particle physics of hidden sector gaugino condensation 
is that it might break supersymmetry (SUSY) [91. If the condensate breaks supersymmetry in 
the hidden sector at the scale (XX) N MG~T N 10 4 GeV, then SUSY is broken in the observable 
sector at the scale M.q,rsy N M&/M,, N TeV. SUSY breaking at this scale would protect 

the small Higgs mass and alleviate the heirarchy problem. Thus, the factor e-i/r1 in the scale 
of gaugino condensation might lead to a large gauge hierarchy. (It is also possible that SUSY 
breaking arises from some other mechanism.) 

.The fhst attempts to implement these ideas in the Gr x Ge = Es x Ei heterotic string 
theory relied on the hidden EL sector becoming strongly interacting, and generating gaugino 
condensation, at a scale comparable to the GUT scale [9]. As noted above, in this case the 
gaugino condensation-generated potential for ReS decays exponentially for large values of the 
dilaton field. Attempts were made [9] to stabilize the dilaton by combining gaugino condensation 
with a term arising from the expectation value of the antisymmetric tensor field @,,A). However, 
quantization conditions on the vacuum expectation value of this field [20] require it to be of order 
unity in Planck units, implying that the resulting potential V(S) only has a minimum where ReS 
is small (well below the desired range above), i.e., where g. is large. As a result, the string theory 
would be strongly coupled, and the whole framework of pertubative calculations in the effective 
field theory would be unreliable [21]. 

Recently, this problem has been reconsidered by Krasnikov [22], Cssas, et al. [23], and 
Kaplunovsky, Dixon, Louis, and Peskin (hereafter KDLP) [24], in the context of string models 
where the hidden sector Gr is itself a product of two or more gauge groups. They found that 
the combined effect of gaugino condensates in multiple hidden groups can generate a dilaton 
potential with a weak-coupling (small perturbative gs) minimum. In some cases, supersymmetry 
also appears to be broken at the requisite scale (L. Dixon, private communication; Kaplunovsky, 
unpublished). Here we will briefly study the axion potential generated in these multiple gaugino 
condensate models and explore its suitability for inllation. 

The effective Lagrangian for the dilaton S can be written 

Ls= 8*(f-s.)2-+s* - V(S,S’) 

where V is the effective potential generated by gaugino condensation. In string theory, the Planck 
scale is derived from the fundamental string tension a’ via M& = 16n/gza’. At tree level, the 
gauge coupling of group G. is ga = g*/&, where k. is the level of the Lie algebra of G. (a 
small integer). Thus, at tree level, we have (ReS) E ReSo = [4?rk,nGVT(M.y)]-‘; assuming 
Gr (GOUT), which contains the standard model, is at level one (k1 = l), the phenomenologically 
acceptable value of the GUT gauge coupling, CXGVT(MPI) 21 l/20- l/30, requires that the dilaton 
VEV be in the range ReSe = 1.5 - 2.5, as noted above. As KDLP show, this large a value of the 
dilaton expectation value can be obtained with a hidden group structure Ge = .W(Nr) x SU(Ne), 
Edvy=tp$he expression [(kIlNI) - (k2/N2)]- i is large; e.g., for their ‘best case’, kl = k2 = 1 

2 = 10 (see below). In what follows, for simplicity, we shall follow KDLP in taking 
Gr to be a product of two .X’(N) groups. 

Following KDLP and ignoring gravitational and subleading l/N corrections (that is, con- 
sidering a global SUSY model with large hidden gauge groups), the effective dilaton potential 
is 

V(S, s’) = & 
PL 

(S+S*)2~~k.0W.(2 
a 

where subscript e = 1,2 now refers to the hidden gauge group Gee. When the coupling constant 
of group G2. = SU(N.) becomes strong, the resulting gaugino condensate is 

(XX), = NavM~e,eiBa exp -24r2k~~~+ ‘“*I 
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Here, the renormalization mass scale (at which the effective Lagrangian is dellned) is taken to be 

M2 - 2 
Fe” - - ; P’ = a’ 

-$$ = (0.216)2 , (2.12) 

where 7 is Euler’s constant and ~2’ = 8rr(S + S*)/Mz is the inverse string tension; v is an N- 
independent constant of order unity; 0. = 27rm/N,,, with m integer, is an arbitrary discrete phase 
reflecting the N.-fold degeneracy of the vacuum states of the theory; bO+ is the renormalization 
group constant for group Gr.; and A. is the threshold. renormalization factor of order N.,. A,, 
which in general can be a function of the moduli fields T’, enters the coupling constant to one-loop 
order via 

1 

m= 
;k.(S + S’) - &log - M&n + Aa 

P2 iG7’ 
(2.13) 

Decomposing the dilaton into real and imaginary parts, and assuming no charged fermions in the 
hidden groups (i.e., taking bo,a = 3N.), we have 

V2M’ 
V(S) = 5 x lo-‘< 

[ 
k:N;e 

(-l~.y.s+A,) + k;N;e(-l..%R;s+A’) 

+ 2klk2N~N2e(-s”P(~+~)ReS-3(~+~)) cos(8~2(~-~)hs+6e)] 

(2.14) 

where 66 = 6, - 0i. 

To study inflation, it is preferable to work with scalar fields that have canonical kinetic terms 
in the Lagrangian. From eqn.(2.9), the kinetic Lagrangian for the real and imaginary components 
of the dilaton is not of this form, since 

&kin = 32rr~&J2 (a,ReS?‘ReS + S,ImS~“ImS) (2.i$ 

Thus the canonically normalized real component is taken to be [19] $n = -Mp~ln(ReS)/fi. 
In general, the real and imaginary parts of S are interdependent, and one should follow the 
coupled evolution in the two-dimensional field space. For simplicity, to focus on the imaginary 
component, the model-independent axion, we shall assume the real component reaches its VEV, 
(ReS) = ReSe, well before the imaginary part does; in a chaotic scenario in which the field is 
initially randomly distributed, this will always be true in some regions of space. (Note that, near 
the Planck time, S will drop out of thermal equilibrium and its potential will be dynamically 
negligible; under these conditions, we expect no special initial value for S to be preferred.) In 
that case, we can define the canonical &on field, 

+a = Mp,ImS/dif%eS,, (2.16). 

However, from eqns. (1.1) and (2.14), we have 4./f = 8?r21mS[(kJN1) - (kz/Nz)]. Combining 
these two expressions, we find the equivalent global symmetry breaking scale 

f= 
MPI (“- Ja)-’ 

8x2 aReSo Ni 
(2.17). 

As we will see in Sections III and IV, the phenomenologically acceptable range for f is f 2 0.3Mpl. 
From eqn.(2.14), the potential for the real part of the dilaton is minimized at 

ReSo=&($-$)-‘~(~)+ln($)+~~a] (2.18) 
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where 

is the difference in threshold renormalization factors. We thus find 

(2.20) 

In order to achieve an acceptably large value for ReSo, KDLP choose, e.g., N1 = 9, N2 = 10, with 
h = k2 = 1; larger values of N,, are excluded because the size of the hidden sector is constrained 
by the total Viiasoro central charge available. With this choice, to obtain ReSe > 1.5 requires 
6i 2 2.8, which implies f/Mp, =s 0.11 21 l/a. If this upper limit is saturated, a sufficiently 
long epoch of slow-rollover inflation can occur (see section III), but the reheat temperature is 
unacceptably low and the density perturbation spectnun has too much power on large scales. On 
the other hand, for 6a = 1, we would have f/Mpi N 0.36, which yields a viable inflationary model 
with an interesting fluctuation spectrum. However, as eqn.(2.18) shows, this value of 6~ would 
require larger groups, e.g., N1, N2 = 16,17, to achieve R&o > 1.5, and this violates the central 
charge limit (however, see comment below). 

For these models, we can read off the effective scale A, defined in eqn.(l.l), from eqw(2.14) 
and (2.18); A is determined up to a constant of order unity (the factor v) by the values of k,, N., 
and A.. For the SU(9) x SCr(l0) example, taking 6~ = 2.8, Al/h’1 = -Az/Nz = -1.4, which 
corresponds to ReSo = 1.5 and f = O.llMpl 2: Mpl/&, we find A = 6 x 10-5v’/2Mpl = 
8 x 10”~‘/~ GeV, in th e right vicinity for generating an acceptable density fluctuation amplitude ,- 
(even though, as noted above, this value off leads to an unacceptable fluctuation spectrum-see 
section IV). This is a pleasing feature of these models: the same physics which sets the condensate 
scale to be of order MGIJT (- Mplexp[-8r2/g2b& fixes A to approximately the same scale. 

From our perspective, the interesting result here is that a string model designed to yield a 
phenomenologically plausible particle physics scenario, in particular a large gauge hierarchy and 
possibly supersymmetry breaking near the weak scale, implies values for the PNGB parameters 
f and A for the model-independent axion which are quite close to those needed for successful 
inilation. Furthermore, as suggested in 123,241, with the inclusion of charged matter fields in one 
of the hidden groups, it is possible that the value of 6~ required to !ix ReSo could be reduced 
from m 3 to u 1, generating a sufEciently large value of f for inflation. 

We end this subsection with several caveats about the treatment given here. First, as men- 
tioned above, we have reduced a twc-dimensional problem to a one-dimensional one by assuming 
the dilaton is already pegged to its expectation value during the evolution of the axion. Although 
this will be accurate for some region of parameter space, and for chaotic initial conditions in 
some regions of the universe, in general one should treat the full twc-dimensional problem. In 
particular, the possibility of inflation in the dilaton direction deserves study (the potential for the 
canonical dilaton contains terms of the form exp(-ae -“*I). Second, due to 2-100~ running of 
the gauge coupling, the prefsctor of the exponential in eqn.(2.11) actually contains an additional 
factor of S [24]. This gives rise to an overall multiplicative factor of Ss’ on the right side of 
eqn. (2.14), modifying the dependence of the potential on the axion field from a pure cosine. 
This could have interesting consequences for the cosmological evolution of the model-independent 
axion. Third, in this discussion we have assumed that the dominant non-perturbative effects in 
string theory arise at the level of the effective supergravity Lagrangian. It has been suggested [25] 
that some inherently stringy non-perturbative effects at the Planck scale are only suppressed by 
a factor exp(--2x/g) as opposed to the field theory factor exp(-8n2/g2). If such stringy effects 
contribute to the effective dilaton potential, they could substantially modify this effective field 
theory analysis. 
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C. Alternatives 

In the preceding subsections, we have outlined two particle physics models which incorporate 
a PNGB with the requisite parameters for inflation. Clearly there are further possibilities [13,15]. 
For example, one can imagine doing away with fundamental scalars altogether, and having the 
PNGB arise as an effective field. One choice would be a composite PNGB built from a fermion 
condensate, in analogy with composite axion models 1141 and the pion. A second possibility, 
recently discussed by Ovrut and Thomas [26], builds on the existence of instantons in the theory 
of an antisymmetric tensor field E,,” (recall that such a tensor field arises, e.g., in superstring 
theory.) Defining the field strength 

f@ = a’@ + aABP’ + aVB“P (2.21) 

the action for this theory is 

J ~%H~~~H~~~ , (2.22) 

with the resulting equation of motion LJ,H fi”’ = 0. As Ovrut and Thomas note, the theory (2.22) 
has pointlike, singular instanton solutions, analogous to Dirac monopoles in electromagnetism; 
evaluating their contribution to the partition function, one tide that the resulting effective action 
can be expressed in terms of an effective mean scalar field 4 ag 

S eff = J [ d% ~2a/&q - 29a?d”/4”3 (a2ey f’ (If cos $ ( >>I , (2.23) 

where Q is a number, and f is a mass scale characterizing the instanton solutions. Clearly this 
is of the form (1.1) and, for f m MPI, (2.23) is another potential candidate model for natural 
i&l&ion. In a variant of these models, the tensor field can be coupled to a fundamental real 
scalar field u with the symmetry-breaking potential V(u) = (X/4!)(u2 - 6m2/X)2. This also leads 
to a potential of the form (l..l) for the associated scalar mean field theory; for f N m N Mpl 
and X N 10-4, one 6mls [26] A - 10 I6 GeV, as desired for successful in&ion. In both of these 
models, as in the string model of the previous subsection., the effective scale A is small compared 
to f due to the exponential (instanton) suppression factor. This is the origin of the hierarchy 
required for the generation of acceptably small density fluctuations in inflation. The advantage 
of these models is that this hierarchy does not need to be put in by hand. 

D. Other Issues 

Before leaving this survey of model-building, we note recent work drawing attention to the 
fact that global symmetries may be explicitly broken by quantum gravity effects [27,28] (e.g., 
wormholes and black holes). If such effects are characterized by the Planck scale, they may 
induce non-renonnalizable higher-dimension terms in the low-energy effective Lagrangian for @ 
(see eqn.2.3), of the form 

K,,(@) = Smn 
ppv” 

M2m+n--l 
P1 

(2.24) 

The coefficients gmn introduced here should not be confused with the gauge and string couplings 
discussed above. Terms with n # 0 explicitly break the global U(1) symmetry of eqn.(2.2). Taking 
gmn = ~gmn~exp(i6,,,,), the induced PNGB potential is a sum of terms of the form 

K,,(4) = lbmnl ( j&)2m+’ MA CO8 (7 + 6,“) (2.25) 
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Therefore, for n # 0, the effective explicit symmetry breaking scale is 

Aeff = IgmnviMP, ($-) -A- I 

where non-renormalizable terms have dimension 2m + n 2 5. Since PNGB inllation requires 
j 2 0.3Mp1 and A N &UT, the COeffiCients gmn of these terms must be relatively small; for 
example, for the dimension 5 term, g s 10-l’ is required. (The upper limit on gmn is relaxed for 
higher dimension terms.) 

Naively, this effect appears to lead us back to the same difficulties this inflation model was 
meant to solve, namely, a small dimensionless constant of order lo-l4 appearing in the Lagrangian. 
However, it is worth making several remarks about this problem. First, a caveat: in the discussion 
above (and in refs.(28)), it was implicitly assumed that the coefficients gmn are ‘naturally’ of order 
unity. However, in the absence of a solvable quantum theory of gravity, these coefficients cannot be 
reliably calculated. In model wormhole calculations, one must introduce a cutoff scale p K Alp{, 
in which case such effective operaton are proportional to the tunneling factor * exp(-A4&/p2). 
Thus, in the regime in which one can calculate, the coefficients gmn are highly suppressed; the 
assumption that they are not at all suppressed depends on an uncertain extrapolation of the 
cutoff scale to the Planck scale. In addition, there may be other effects which enter to suppress 
these terms. In particular, in the axion model studied in more depth in ref.1271, wormhole effects 
are effectively cut off at the symmetry breaking scale j, leading to an exponential suppression 
N exp(-Mpl/f) in the wormhole induced axion potential. Second, even supposing such terms 
are in principle unsuppressed (all gmn of order unity), there are ways in which they could be 

- evaded. For example, for a large gauge group (as contemplated above), a global symmetry may 
automatically be present, due to the gauge symmetry and field content of the theory, preventing 
terms up to some relatively large value of 2m + n; in the present case, this would require that 
all terma up to 2m + n N 25 be forbidden. Alternatively, if the field 4 is an effective field which 
arises below the Planck scale, as suggested above, such explicit symmetry breaking terms can 
be forbidden by a local symmetry of the underlying theory, as in the superstring example of 
the previous subsection. Alternatively, as in the antisymmetric tensor model of section C above, 
the 4 field may be unrelated to a global symmetry. Therefore, while the arguments of [28] are 
provocative, there are certainly examplea of particle physics models which give rise to potentials 
of the form (l.l), with the requisite mass scales for in&ion, which evade these di5culties. 

III. COSMIC EVOLUTION OF THE INFLATON FIELD 

With these models as theoretical inspiration, we turn now to the cosmological dynamics 
of an effective scalar field theory with a potential of the form (1.1) below the scale f. For 
example, in the model of Sec. II.A, j is the global spontaneous symmetry breaking scale, and 
$ describes the phase degree of freedom around the bottom of the Mexican hat potential (2.3); 
in other models, however, the picture may differ. To successfully solve the cosmological puzzles 
of the standard cosmology, an intlationary model must satisfy a variety of constraints, including 
sufficient inflation (greater than 60 e-folds of accelerated expansion) for a reasonable range of 
initial conditions; sufficiently high reheat temperature to generate a baryon asymmetry after 
inflation; and an acceptable amplitude and spectrum of density fluctuations. In this section we 
explore these constraints analytically and numerically for potentials of the form (1.1). 

The 6 interaction cross-sections with other fields are generally of order c N l/j2, so its 
interaction rate is of order 7-l - T3 /j2. Comparing this with the expansion rate H N p /Mpr, 
we see that the scalar in&on field thermally decouples at a temperature T u j2/Mpl N j. 
We therefore assume 4 is initially laid down at random between 0 and 27r j in different causally 
connected regions. (This is the simplest but by no means only possible initial condition.) Within 
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each Hubble volume, (i.e., ignoring spatial gradients-see below) the evolution of the field is then 
described by the classical equation of motion for a homogeneous field 4(t), 

4+3H4+r4+V’($4=Oo (3.1) 

where I‘ is the decay width of the in&ton, and the expansion rate H = h/a is determined by the 
Einstein equation, 

H2=&[y(#)++d2]. (3.2) 

For completeness, it is also useful to have the second order Friedmann equation, 

g-&-[$uw)]. 

In Eqns.(3.2-3), we have assumed that the scalar field dominates the stress energy of the universe; 
this will hold starting near the onset of inflation. 

In the temperature range A 5 T 5 j, the potential V(4) is dynamically irrelevant, because 
the forcing term V’(b) in Eq.(3.1) is negligible compared to the Hubble-damping term. (In 
addition, for &on-like models in which V(d) is generated by non-perturbative gauge effects, 
A + 0 as T/A * cc due to the high-temperature suppression of instantone [14].) Thus, in 
this temperature range, aside from the smoothing of spatial gradients in 4 (see below), the field 
does not evolve. Finally, for T +$ A, in regions of the universe with 4 initially near the top 
of the potent&& the field starts to roll slowly down the hill toward the minimum. In those 
regions, the energy density of the universe is quickly dominated by the vacuum contribution 
(v(b) = 2A4 k Prod N T’), and the universe expands exponentially. Since the initial conditions 
for 4 are random, our model is closest in spirit to the chaotic inflationary scenario [29]. In 
succeeding subsections, we study this evolution in more detail. 

A. Standard Slow-Rollover Analysis 

In this subsection, we recapitulate the analytic treatment of PNGB inflation given in Paper 
I. A sutficient, but not necessary, condition for inflation is that the field be slowly rolling (SR) 
in its potential. Therefore, by analyzing the conditions for, and number of e-foldings of, inflation 
in the SR regime, we should be at worst underestimating the true number of in&ion e-folds. 
The field is said to be slowly rolling when its motion is overdamped, i.e., 4 < 3H& so that the 
4 term can be dropped in Eq. (3.1) (n.b., we assume r a H during this phase). It is easy to 
show that in general this SR condition is a suficient condition for inflation. First, from the scalar 
equation of motion (3.1), the defining SR condition implies that 4’ CC 2V(4). On the other hand, 
the universe is inflating if the Robertson-Walker scale factor a(t) is accelerating, ii > 0; from Eqn. 
(3.3), this requires 4’ < V. Thus, if the SR condition is well satisfied, we are guaranteed to be 
in an inflationary epoch. The converse ia not necessarily true: inflation can OCCUT even when the 
field is not slowly rolling. However, we will see in subsequent sections that, for this potential, if j 
is larger than about Mpl/&, the SR epoch is roughly coincident with the inflationary epoch. 

Hereon, for the purposes of numerical estimates, we shall assume i&&ion begins at a field 
value 0 < q&/f < ?r; since the potential is symmetric about its minimum, we could just as easily 
consider the case ?r < $1/j < 2x. For the potential (Ll), the SR condition implies that two 
conditions are satisfied: 

IV”(+)1 ,$ 9H2 , i.e., J~&$ 
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and 
I”‘;W$Pl 5 dZG , i.e., 

sin(blf) &Gf 
1+ cos($/f) s - MPI 

from Eqns. (3.4), the existence of a broad SR regime requires j 1 Mpi/& (required below 
for other reasons). The SR epoch ends when $ reaches a value 42, at which one of the inequalities 
(3.4) is violated. In Fig.1, we show $2/f as a function of j/Mpl; as f grows, &2/f approaches 
the potential minimum at A. For example, for f = Mpl, qSz jf = 2.98, white for j = Mprlt/i;i;;, 
&2/j = 1.9. For j 2 0.3Mpl which, as we shall see below, is the mass range of greatest interest, 
the two inequalities (3.4a) and (3.4b) give very similar estimates for 42. For simplicity, we can 
then use (3.4b) to obtain 

(f 2 0.3Mpd (3.5) 

Once $I grows beyond &, the field evolution is more appropriately described in terms of oscillations 
about the potential minimum, and reheating takes place. as described below. We note that the 
expansion of the universe (the 3x4 term in Eq. 3.1) acts as a strong enough source of friction 
that the field is not able to roll through the minimum at xj and back up the other side su5ciently 
far to have any further inflationary period. 

To solve the standard cosmological puzzles, we demand that the scale factor of the universe 
idatea by at least 60 e-foldings during the SR regime, 

N(h,4z,j) = h(aa/al) = 1; Hdt = 2 1: #dqS 

=$$n[~~~;;;;] 160. (3.6) 

Using Eqm. (3.4,5) to determine 42 as a function of j, the constraint (3.6) determines the 
maximum initial value (@‘“‘) of 41 consistent with su5icient inflation, N.(+yz, &., f) = 60. For 
f 2 ‘3.3Mp1, 

-1/& (-y--2) . 
(3.7) 

The fraction of the universe with #JI E [0, &“““I will inflate sufliciently. If we assume that $1 
is randomly distributed between 0 and *j from one Hubble volume to another, the a priori 
probability of being in such a region is P = I#(““= /rj. For example, for j = 3Mpl, Mpl, Mpl/2, 
and Mpl/&, the probability P = 0.7, 0.2, 3 x 10e3, and 3 x 10e41. The initial fraction of 
the universe that inflates sutticiently drops precipitously with decreasing j, but is large for j 
near Mpf. This is shown in Fig. 1, which displays log(&“‘*/f) = 0.5 + 1ogP and &J j. These 
considerations show that for values off su&iently near MPI, sufficient inflation takes place for 
a broad range of initial values of the field 4. We note that these constraints do not determine the 
second mas scale A. 

According to some inflationists, the discussion above of the probability of su5cient inflation 
is overly conservative, since it did not take into account the extra relative growth of the regions 
of the universe that inflate. After i&&ion, those initial Bubble volumes of the universe that did 
inflate end up occupying a much larger volume than those that did not. Hence, below we will 
also compute the a poster&i probability of inflation, that is, the fraction of the final volume of 
the universe that inflated. 
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B. Numerical Evolution of the Scalar Field 

In this section, we expand upon the results of the preceding subsection by numerically inte- 
grating the equations of motion. This yields a more accurate estimate of the time (or field value) 
when inflation ends and the amount of inflation that takes place, as a function of the mass scale 
f and the initial value of the field $1. 

First we rewrite Eq. (3.1) in terms of more useful variables. As a dimensionless time variable, 
we use the number of e-foldings of the scale factor, 

dn = Hdt, (3.3) 

and hence d/dn = H-‘d/dt. We also define the dimensionless field value, field ‘velocity’, and 
mass ratio 

Y = #If ; v=dyfdn ;~ 7 3 3M;,/8?rf2 . (3.9) 

Then we can write Eqs. (3.1) and (3.2) as 

2 = [7 tm(Yl2) - 3”] [1 - v2/27] - WV [1 - u2/27] 3’2r1/2 [1+ cos y] -1’2, (3.10) 

where w = I’f /A2 contains the effects of dissipation. For the purpose of numerically calculating 
the evolution of the field, we will assume as in the previous section that this dissipation term is 
negligible. In this approximation, Eq. (3.10) depends only on the shape of the potential and on 
7, i.e., on the ratio f/M,-,, and not explicitly on A. 

In order to solve Eq. (3.10), we must specify two initial conditions: the initial values of the 
field and its time derivative. We allow the initial field value yl = &/f to range over the interval 
0 to K, and take the initial velocity to be ~1 = &/Hf = 0. Th e assumption of zero initial velocity 
is the one usually made in discussions of itiationary models. However, in the course of smoothing 
out gradients or due to randomness in the initial conditions, we expect the field to acquire an 
initial ‘Kibble’ (301 velocity at the temperature T - A such that its kinetic energy is comparable 
to the potential energy - A4. Naively, this velocity effect could delay or even prevent the onset of 
inflation. This problem has been studied previously in the context of new and chaotic inflationary 
models and has been shown to be potentially problematic for new inflation [31]. Initial velocities 
in the context of the present model have been studied numericaIly by Knox and Olinto [32]. They 
6nd that, due to the periodic nature of the potential, the effect of initial velocities is merely to 
shift, but not change the size of, the phase space of initial field values which lead to at least 
60 e-folds of tiation. That is, as $1 is increased from zero, the value of 41 at which inflation 
begins is shifted, but the fraction of initial field space which inflates is approximately invariant. 
Therefore, for models of the form (U), we lose no generality by assuming $1 = 0. Given these 
initial conditions, we solve the equation of motion (3.10) numerically. The resulting solution 
y(n, yr) provides the value of the &field after n e-foldings of the scale factor. 

As noted above, in an inflationary phase the scale factor accelerates in time, ii > 0. The end 
of the inflationary epoch thus occurs at the transition from ci > 0 to ii < 0. We denote the field 
value at the end of idation by &d. We End that the value of &,+ is virtually insensitive to 
where the field started rolling on the potential, $1. In Paper I and Sect. IIIA, we used 42, the 
value of the field at the end of the SR epoch, as an estimate of the end of inffation. Comparing the 
correct value QInd with the approximate value &, we fmd that the error is only 1% for f N Mpl, 
10% for f = 0.1Mp1, and rapidly gets large for smaller values off. In particular, no slow rollover 
regime exists for f 5 MpJa, and yet for small enough values of $1, significant infiation can 
still occur. In practice, however, the small difference between & and the exact result &nd shown 
in Figure 1 is irrelevant, since, as we show below, values off smaller than 0.3Mp1 are excluded 
for other reasons. 
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For a given initial value of the field 41 (or yt), th e solution to Eq. (3.10) tells us the total 
number of inilation e-foldings of the scale factor, N(&) ( w h ere the end of inflation is defined by 
the condition ii = 0). Figure 2 shows the number N(&, f) of e-foldings ss a function of the initial 
value of the field $1 for different choices of the maSs scale f. One can see that, for $1/f < 1, the 
dependence is almost exactly logarithmic, 

N(h) = A - B W&/f 1. (3.11) 

In the limit of small $1/f, the analytic SR estimate of Eq. (3.6) implies this same functional 
dependence and provides values for the constants A and B; in particular, B,, = 16?rf 2/M& 
The numerical values obtained for A and B by solving (3.10) are virtually the same as the SR 
estimates if f is near MPI and start to differ as f decreases. From Fig. 2, one can read off values 
for yy” = @""/f, the largest initial value of the field that can give rise to N(@“‘) = 60 e- 
foldings of inflation. Again, the numerical results for +y’ are nearly identical to the SR estimates 
(shown in Fig. 1) for values off near Mpi; they differ by 
significantly as f approaches Mpl/m from above. 

N 10% for f = Mpl/lO, and deviate 

1)’ Analytic Solution: Small-angle approximation 

The simple logarithmic behavior of the number of e-foldings N(&) indicates that an analytic 
approximation can be found, one which differs from the SR approximation and which is more 
useful for smaller values of f /Mpl. In this region of parameter space, the conditions 

y-xl and VQ 1, (3.12) 

always apply during the intlationary epoch, and the equation of motion (3.10) can be approximated 
by 

dv 
ly-33v, 

x=2 (3.13) 

where we have made the “small angle” (SA) approximation for the trigonometric functions and 
have neglected higher order terms in y and v. Eqn. (3.13) has solutions of the form 

Y(4 = Yl eon , (3.14a) 

that is, 

4 = &epSBdt , 

where the constant LI is given by 

(3.146) 

Q = ; [9 + 273 v2 - ; = gl+$]1’2-l) 

Thus, the total number N of e-foldings can be written as 

(3.15) 

where & is the value of the field at the end of inflation. Eqn. (3.16) provides us with an analytic 
solution of the same form as Eqn.(3.11); note that, here, the constant B of Eqn. (3.11) is given 
by B,, = l/a, which differs in general from the value B,, predicted by the slow rollover approxi- 
mation. However, for lar 
B f 

e values off, such that f W MpJ&. the two approximations agree, 
.,(I + B,, = 16xf2/Mpl. Comparison with Fig. 2 shows that, unlike the SR approximation, 
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the small angle approximation is also in excellent agreement with the numerical results for small 
values of f. 

C. Constraints: Density Fluctuations, Reheating, Suflkient Inflation 

Having studied the evolution of the homogeneous mode 4(t) of the scalar field and delineated 
the regions of initial field space for sui%cient inllation, we now address other constraints the model 
must satisfy for successful inflation, including density fluctuations and reheating. In particular, 
these phenomena place tighter constraints on the range of allowed scales f and also limit the 
second mass scale A. Since, in Sec. IIIB, we showed that the SR approximation is accurate for 
the parameter range of interest, we shall rely on it throughout this discussion. 

1) Density Fluctuation Amplitude 

Quantum fluctuations of the inflaton field as it rolls down its potential generate adiabatic 
density perturbations that may lay the groundwork for large-scale structure and leave their imprint 
on the microwave background anisotropy [33-361. In this context, a convenient measure of the 
perturbation amplitude is given by the gauge-invariant variable C, first studied in ref.[36]. We 
follow ref.[ll] in deiining the power in C, 

3 E2 

EOR 
(3.17) 

Here, (6p/p)ao~ denotes the perturbation amplitude (in uniform Hubble constant gauge) when 
a given wavelength enters the Hubble radius in the radiation- or matter-dominated era, and the 
last expression is to be evaluated when the same comoving wavelength crosses outside the Hubble 
radius during inflation. For scale-invariant perturbations, the amplitude at Hubble-radius-crossing 
is independent of perturbation wavelength. 

To normalize the amplitude of the perturbation spectrum, we assume that the underlying 
density perturbations Pp at a given time are traced by the galaxy number density fluctuations 
Pgal up to an overall bias factor b,, that is, Pk” = Pi$/b,. As inferred from redshift surveys, the 
varmnce uia1 in galaxy counts in spheres of radius 8 h-i Mpc is about unity (where the Hubble 
parameter Ho = 1OOh km/sec/Mpc). For a scale-invariant spectrum of primordial fluctuations 
with cold dark matter (CDM), this implies [ll] 

pw u 10-4, 
C 

4 

As we shall see below, we will be interested in cases where the primordial spectrum may deviate 
signiiicantly from scale-invariant, and these cases will be discussed in detail in Sec. Iv; here, 
we will use the scale-invariant normalization to get an approximate fix on the scale A. (For 
values of f close to Mpl, this approximation is very accurate.) For the scale-invariant CDM 
model, the recent COBE observation of the microwave background anisotropy [37] roughly implies 
7.7 x 10-s < Py < 1.4 x 10m4, or, using eqn. (3.18), 0.7 < b, < 1.3. 

Using the analytic estimates of Sec. IIIA, the largest amplitude perturbations on observable 
scales are produced 60 e-foldings before the end of inilation, where 4 = by”, and have amplitude 

3’2 [1+ cos(qy”/f )]3/2 
sin(by”/f) . 

(3.19) 
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Applying the COBE constraint above to Eq.(3.19), we find A as a function off; this is plotted 
in Fig. 1. For example, 

A = 8.8 x 10” - 1.2 x 10” GeV for f = Mpl (3.20~) 

A = 1.4 x lOi - 2 x 1Ol5 GeV for f = Mpl/2 (3.20b) 

Thus, to generate the fluctuations responsible for large-scale structure, A should be comparable 
to the GUT scale, and the in&on mars m+ = AZ/f - 1O’l - 1Ol3 GeV. 

We can obtain an analytic estimate of A as a function off when f s (3/4)Mpl; in this case, it 
is a good approximation to take qSy*/nf < 1. A s a result, in Eqn.(3.19), we have approximately 

p’l2 
c +L(y”“(+..-) (3.21) 

Now the last term in this expression is obtained by using Eqn. (3.6) with N(+f”““, $2, f) = 60: 

yz2rin($)exp[-J$$] (3.22) 

Substituting (3.22) on the RHS of (3.21) and using Eqa(3.18) we find the value of A(f) in terms 
of the bias parameter: 

A(f) = “b~,:“‘“GeV[~sin($)]l’*exp(-~) (3.23) 

Here, the quantity sin(&/2f) is determined by the slow-rollover conditions, Eqns. (3.43.5) and 
ie generally of order unity. The dominant factor in (3.23) ia the exponential dependence on f 2, 
which is responsible for the rapid downturn as f begins to drop significantly below Mpt in the 
-e for A(f) in Fig.1 [Note that Fig. 1 is valid for all f, even outside the regime of validity of 
the above analytic estimates.] For completeness, we note that the value in Eqa(3.23) is strictly 
only an upper bound on the scale A, since the perturbations responsible for large-scale structure 
could be formed by some other (non-inflationary) mechanism. 

2) Density Fluctuation Spectrum 

Using the approximations above, we can investi&e the wavelength dependence of the per- 
turbation amplitude at Hubble-radius-crossing and in particular study how it deviates from the 
scale-invariant spectrum usually acrsociated with inflation. Here we give a quick derivation of the 
spectrum, and defer a fuller discussion to Sec. Iv. 

Let k denote the comoving wavenumber of a fluctuation. The comoving lengthscale of the 
fluctuation, k-‘, crosses outside the comoving Hubble radius [Hal-l during inilation at the time 
when the rolling scalar field has the value &. This occurs Nr(k) s N(q&, #z, f) e-folds before 
the end of inflation, where N(&,&, f) is given by Eqa(3.6) with 41 replaced by &. The 
corresponding comoving lengthscale (expressed in current units) is 

k-’ z (3000h-‘Mpc)exp(Nr(k) - 60) , (3.24) 

where the horizon size today is zx 30OOh-‘Mpc. For scales of physical interest for large-scale 
structure, Nr(k) 2 50; for f s (3/4)Mpr, these scales satisfy $Q/f << 1. In this limit, comparing 
two different field values $k, and &, from Eqn.(3.6) we have 

+k, = ‘$k,‘=P (- Al~T~‘) , (3.25) 
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where AN, = Nl(k2) - Nr(kl). Thus, using Eqw(3.19) and (3.21), we can compare the pertur- 
bation amplitude at the two field values, 

ANrM;, 
16*f2 . (3.26) 

Now, from Eqn.(3.24), we have the relation AN, = ln(kl/kz) (here we have approximated Hk, z 
Hk,; more precisely, ANI = h(klHk,/kzHk,)). Substituting this relation into (3.26), we 6nd 
how the perturbation amplitude at Hubble radius crossing scales with comoving wavelength, 

w (P;/2)k w k-@v/16”” 

By comparison, for a scale-invariant spectrum, the Hubble radius amplitude would be independent 
of the perturbation lengthscale k-‘; the positive exponent in Eqn.(3.27) indicates that the PNGB 
models with f s Mpl have more relative power on large scales than do scale-invariant fluctuations. 

It is useful to transcribe this result in terms of the power spectrum of the primordial per- 
turbations at fixed time (rather than at Hubble-radius crossing). Defining the Fourier transform 
6k of the density field, from Eqn.(3.27) the power spectrum is a power law in the wavenumber k, 
Pp = (l6#) - k”*, where the index n, is given by 

Id2 n.=l-AX 
8af2 (f s 3MPd4) . 

For comparison, the scale-invariant Harrison-Zel’dovich-Peebles-Yu spectrum corresponds to n, = 
1. For values off close to Mpl, the spectrum is close to scale-invariant, as expected; however, as 
f decreases, the spectrum deviates signifkantly from scale-invariance-e.g., for f = Mpl/& = 
0.2Mpl, the perturbations have a white noise spectrum, n, = 0. In sec. IV, we explore the 
implications of models with power law primordial spectra in depth. 

3) Quantum Fluctuations 

For the semi-&s&al treatment of the scalar field used so far to be valid, the initial value 
of the field should be larger than the characteristic amplitude of quantum fluctuations in #, i.e., 
41 2 A# = H/2n. In particular, requiring that quantum fluctuations do not reduce the number 
of i&I&ion e-folds below 60 implies that the condition 41”“’ 
SR approximation and Eqn.(3.22), we find 

> H/2?r must be satisfied. Using the 

(3.29) 

Since this ratio is very small over the parameter range of interest, this constraint places no 
significant restrictions on the model. For example, this constraint requires that &/f > lo-’ for 
f = MPI and #l/f > 6 x 10-O for f = MPJ2, while the corresponding values of $y’/f are 
0.63 and 9.4 x 10m3. Even if 41 is at some stage smaller than this constraint, we expect that 
quantum fluctuations would eventually bring the field into the semiclassical regime, so inflation 
would begin, if the field was sufficiently spatially coherent. 

4) Probability of Sufficient Inflation 

Armed with the numerical and analytic results above, we now calculate the a poster&i 
probability of su5cient intlation. We consider the universe at the end of inflation, and calculate 
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the fraction P of the volume of the universe at that time which had inflated by at least 60 
e-foldings: 

(3.30) 

Here, the lower limit of integration in the denominator is the limit of validity of the semiclassical 
treatment of the scalar field; the initial value of 4 must exceed its quantum fluctuations, & > 
A#I = H/2x. We will use the form for N(&) given by Eq. (3.11) to evaluate the integrz 
appearing in Eq. (3.30). As shown previously, this approximate form for N(&) is only valid 
for $1/f < 1. However, we will assume that it holds over the entire range of integration; in the 
Appendix, we show that the resulting errors are small. Our basic result is that the a posteriori 
probability for idation is esaentialIy unity for f larger than the critical value fc e 0.06Mpl. As 
f drops below this value, the probability given by Eq. (3.30) rapidly approaches 0. To illustrate 
this result, we evaluate the integrals in (3.30); both are of the form 

I = /” dyle3Ae-3BIn uI 
J. 

= &{ (y”-’ - ,y-}, 
(3.31) 

where c is a small number, c = H/2rf or yr, and B is the f-dependent coefficient appearing 
in Eqn.(3.11). If 3B > 1, the integral I is dominated by the lower end of the range of integration 
and only the 6rst term in Eq. (3.31) is significant. In this case, the probability P is given by 

- 

‘p = l- (j-+)3B-1, (3.32) 

where 3B - 1 is positive. The probability of su5cient inflation is close to unity as long as the 
ratio in brackets H/2r4-” is small; however, this is guaranteed by Eqn.(3.29). Combining Eqs. 
(3.29) and (3.32) yields the probability: 

pi> l- [F (!!$c)‘]-. (3.33) 

This expression is valid provided that 3B - 1 is positive and not extremely close to 0. 

As the value of 38 decreases toward unity, the probability P decreases and the approximation 
leading to (3.32) begins to break down. As areferencepoint, consider the special csse 3B = 1; then 
the integral I = e3A ln(?r/e) and the probability P w - 0.05. As B decreases further, the integral 
in Eq. (3.31) obtains most of its contribution from the upper end of the range of integration 
and hence both integrals appearing in Eq. (3.30) have nearly the same value. As a result, the 
probability P rapidly approaches 0. 

To summarize, we find that the probability P of sufficient inflation depends primarily on 
the value of the coefficient B appearing in Eq. (3.11), which in turn determines the number of 
e-foldings of the universe as a function of the initial value $1 of the field. For B > l/3, the 
probability P is nearly unity; for B < l/3, the probability P quickly approaches 0. In the SR 
approximation, B x 16rf*/k$ which would imply a critical value f,“’ = f (B = l/3) = l/a. 
On the other hand, the numerical calculations yield the critical value of the mess scale fe = 0.058. 
This discrepancy is traced to the fact that the SR approximation is invalid for such small values 
of f. In this case, the “small angle” approximation discussed in Sec. 1II.B is more appropriate; 
using Eqn.(3.15), we can analytically determine the critical value off for which B,,, 3 l/cr = l/3, 



This is in excellent agreement with the value found numerically. 

5) Reheating 

At the end of the slow-rolling regime, the field $ oscillates about the minimum of the potential, 
and gives rise to particle and entropy production. The decay of 4 into fermions and gauge bosom 
reheats the universe to a temperature TEE = (45/4?r3g.)‘j4J, where g, is the number of 
relativistic degrees of freedom. On dimensional grounds, the decay rate is J? z g2me3/f2 = 
g2ha/f5, where g is an effective coupling constant. (For example, in the axion model [6,7], 
g o( QEM for two-photon decay, and g 0: (n~/rnh)~ for decays to light fermions $.) Thus, the 
reheat temperature is 

(3.35) 

For example, for f = Mpl, using (3.20a) for A, and taking g. = 103, we find TRH z lO*g GeV, 
too low for conventional GUT baryogenesis, but high enough if baryogenesis takes place through 
sphaleron-mediated processes at the electroweak scale. Alternatively, the baryon asymmetry can 
be produced directly during reheating through baryon-violating decays of 4 or its decay products. 
The resulting baryon-to-entropy ratio is rig/s 2! cT~~fm+ - egA/f N 10e4eg, where c is the 
CP-violating parameter; provided eg 2 lo-‘, the observed asymmetry can be generated in this 
W‘3Y. 

We saw above that the amplitude of density perturbations produced during inflation yields 
a bound on the scale A as a function of the tidamental scale f, eqn.(3.23). We can use this to 
express Tnn as a function of f (which depends only weakly on g and g.); requiring that this be 
sticiently high for some form of baryogenesis leads to an important lower bound on the scale f, 
which as we shall see below, is more restrictiye than the a posteriori bound above and comparably 
restrictive with the microwave anisotropy bound on the perturbation spectrum to be discussed in 
Sec. IV. Since we will be interested in a lower bound on f, we consider the case f 2 (3/4)Mp,-80 
that eq~(3.23) applies. Substituting (3.23) into (3.35), we find the reheat temperature 

T 
1O’O GeV 

RE = b~,2 g(yf)1L4 (~)4sh3~~ ($) exp [-g!q (3.36) 

The important point here is that the reheat tempekature drops exponentially as f drops well below 
Mpl. For baryogenesis to take place after inflation, at a minimum we should require TRY > 100 
GeV, the electroweak scale. From eqn.(3.36), this leads to the lower bound 

(Here, we have set g = 1 and g. = 100, but this limit depends only logarithmically on g and 
g..) In terms of the density perturbation spectrum given in Eqn.(3.28), if inflation produces the 
dominant fluctuations on all scales, then this reheating constraint implies na 2 0.5. 

One additional point concerning reheating in these models deserves mention. In the string 
models of 511, the axion couples predominantly to the bidden sector; in such infiation models, one 
might then worry that reheating would take place more efficiently in the bidden a8 opposed to 
the ordinary sector. (This would not be a concern in models without a hidden sector, such as 
those patterned after technic&r.) In practice, this is not an insurmountable obstacle for these 
models, because gravitational interactions lead to an effective coupling between the hidden sector 
in&on and the ordinary sector particles. Furthermore,‘for f 
decay rate to ordinary particles, r 

u MPJ, the gravitationally induced 
u ms/M$,, is comparable to the axion’s decay rate to the 

hidden sector. Thus, we would expect the two sectors to reheat to comparable temperatures. It 
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is then easy to imagine a subsequent entropy-producing ordinary particle decay which heats the 
ordinary sector relative to the hidden sector, so that the contribution of the hidden sector to the 
total energy density at the time of big bang nucleosynthesis is negligible. 

6) Initial Spatial Gradients 

In the previous discussion, we have focussed on the evolution of a nearly homogeneous scalar 
field e%(1). However, since we expect the field initially to be laid down at random on scales larger 
than the Hubble radius, spatial ‘Kibble’ [30] gradients will be present on these scales. For inflation 
to occur, it is necessary that the stress energy tensor averaged over a Hubble volume be dominated 
by the potential V(4), not by gradient terms ((8i$)e). (This is of CDUTS~ a concern for all models 
of inflation, not just those considered here.) In paper I, we addressed this issue at some length, 
and argued that, when the universe has cooled to the temperature T m A at which inflation would 
otherwise begin, the energy density contributed by field gradients would be at most comparable to 
that in the potential. (During the prior radiation-dominated epoch, the gradient energy density 
SC&S like radiation, pgrad N (8i&)2 N f2/t2 N p, where the last equality SSSUIWS f w Mpl; 
thus, at T N A, we expect pgc.d N A4 N V(b).) Since these gradients rapidly redshift away with 
the subsequent expansion, they would typically delay only slightly the onset of inflation. 

Here, we point out that the canonical PNGB model has an additional automatic feature which 
can ensure that spatial gradients in the PNGB field are negligible at the onset of natural inflation. 
Namely, if # is the angular component of a complex field a, as in the model of Eqn.(2.3), then 
the heavier, radial component of Q can generate an earlier period of inflation as it rolls down its 
potential. If the later angular inflation leads to more than 60 e-folds of growth in the scale factor 
(as we have been assuming), then the only important effect of the earlier inllation epoch would be 
to rapidly stretch out spatial gradients in the angular d field. (This point was stressed to us by A. 
Liide, private communication.) Furthermore, es we show below, the earlier inflation period does 
not require another small coupling constant. In particular, for the model of Eqn.(2.3), for a broad 
range of initial conditions, radial inSation takes place even if the complex scalar self-coupling X is 
of order unity. In addition, only a small number of radial inflation s-folds is required to efficiently 
damp spatial gradients in 4. 

In the usual way, we can decompose the complex field @ into two real radial and angular 
components n and 4, 

@ = /@If 1 
\/2’ 

(3.38) 

Consider the evolution of the radial mode r) in the potential (2.3), V(q) = (X/4)(q2 - f2)2 (in 
general the radial and angular motions are coupled; however, since the radial mode is much 
heavier, its evolution can be approximately decoupled). Analyzing this motion in a manner 
analagous to §III.A, and using the fact that f is comparable to Mpl, we see that some amount 
of radial inflation is expected provided the initial value of n is sufIiciently far from its lllilhlllll 
(7) = f. In fact, this initial period of inflation will be generic as long as gradient terms in the 
n energy density do not dominate over the potential V(q) near the Planck scale and the initial 
value of 7 is not very close to f. For example, for f = M 
field is greater than 2Mp1, then in rolling to its minim 

pr, if the initial value nr of the radial 
um it will generate at least 5 e-foldings of 

‘chaotic’ inflation, and angular gradients would be stretched by a large factor. Alternatively, if 
71 2 0.3Mp1, the universe would experience about the same number of e-foldings of ‘new’ inflation 
as the field rolls from near the local maximum of the Mexican hat at the origin. We note that, 
for a potential of the form (2.3), for f near Mpl the SR condition holds over some range of 7, 
independent of the value of the coupling X (just as Eqn.(3.6) d oes not depend on A). Therefore, 
radial inflation takes place even if X is large. The density fluctuations produced during this phase 
are on unobservably large scales if the subsequent angular inllation lasts for at least 65 e-folds 
of expansion, so there are no strong constraints on X arising from density fluctuations and the 
microwave anisotropy. One should, however, require d/c s 1 to avoid fluctuations of order 
unity on the Hubble radius, since these would pinch off into black holes. 
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IV. POWER LAW SPECTRA AND LARGE-SCALE STRUCTURE 

Recent observations of large scale galaxy clust&ng and flows suggest that there is more power 
on large scales than given by an nL, = 1 scale invariant spectrum in ‘standard’ cold dark matter 
dominated universes (CDM models). In this section, we consider a primordial power spectrum 
l&l2 N k”*; we show the degree to which varying the index n8, while keeping all other features of 
the CDM model fixed, helps solve this large scale structure dilemma. We have shown that natural 
inflation will generate such a power law perturbation spectrum with n. 5 1 over a wide range 
of wavenumbers, in particular over the waveband directly probed by observations of large scale 
galaxy clustering and microwave background anisotropies. We demonstrate this in more detail 
in Sec. IV.A below, where we also discuss other inflation models (such sa those with exponential 
potentials and many versions of extended inilation) which also predict power law spectra with 
% # 1. 

In Sec. IV.B, we show that current data on microwave anisotropies and large-scale flows, and 
the requirement that structure forms sufficiently early, constrain n. to be 2 0.6 for CDM models, 
whereas values 5 0.6 are needed to explain the large scale clustering of galaxies. The reason we 
put the CDM model under such scrutiny rather than other inflation-inspired models, apart from 
its having dominated the theoretical scene for the past decade, is that it is a minimal model, in 
the sense that it requires a small number of ingredients to specify it. For the ‘standard’ CDM 
model, one assumes a flat geometry for the Universe with Q z 1 in non-relativistic particles and 
takes hz 0.5, where h is the Hubble constant Ho in units of 1OOkm s-‘Mpc-‘. (For values of h 
larger than this, if R = 1 the Universe would be younger than the inferred ages of globular cluster 
stars.) In the following, we assume a negligible baryon abundance, RB < R, since a value of 
Rg s 0.07 is indicated by primordial nucleosynthesis constraints. The rest of the non-relativistic 
matter is in cold dark matter relics, Rcdm = Q - Rg. Since the large scale structure dilemma 
has been with us in one guise or another since the early 198Os, a major line of research over the 
past decade has been to invent models with scale invariant primordial spectra that have more 
power than the n. = 1 CDM model does on large scales. These ‘nonstandard’ ns = 1 models 
include scenarios with a non-zero cosmological constant, a larger baryon density Rg than that 
inferred from standard nucleosynthesis, and mixtures of hot and cold dark matter, to name just 
a few. Often somewhat baroque from the particle physics prespective, such alterations would all 
result in more stringent constraints on ta# if we allow it to vary than the ones we derive for the 
standard CDM model. (Indeed there are models that require the effective n8 to be > 1, such BS 
the isocwvature baryon model, but this is certainly not an outcome of natural inflation.) 

A. Inflation Models and Power Law Spectra 

Before turning to the data, we first show explicitly how tiny the deviations from a power 
law form are for natural irdlation, and that Eqn.(3.28) for n8 is highly accurate. We also discuss 
the form that nb takes for other popular models of inilation such BS power law, extended, and 
chaotic inflation. Since we are dealing with spectra that can change somewhat with wavenumber, 
we define a ‘local’ (i.e., k-dependent) spectral index n,(k) by 

n..(k) E l+dlnP<(k)/dhk , (4.1) 

where the C-power spectrum P<(k) introduced in Sec. III provides a better meaSure of the post- 
tiation spectrum than does the density power spectrum. The quantity C, the variation of the 
3-space volume on uniform Hubble parameter hypersurfaces, is gauge- and hypersurface-invariant, 
whereas the density is neither. 
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1) Natural Inflation 

For natural iuflation this local index is 

ME-l2 n.(k) e 1 - - 
@rf*) 1 

1 + [I+ (Wd148*f*)]-’ exp[--$$$ N&k)] 

1 - (1 + (Mpr2/48rf2)]-‘11 + (A4p~2/16xf2)] exp[-$$ Nl(k)] 1 ’ (4’2) 

Here Nl(k) is the number of e-foldings between the time when the inverse wavenumber k-’ first 
exceeded the comoving Hubble length (the lirst ‘horizon crossing’) and the end of intlation. For 
waves on scales of observable interest, Nr(k) N 50 - 60, so the factor in large brackets is always 
very close to unity over the entire range of values off we are considering. 

The derivation of (4.2) is very similar to that given in Sec. III, so we just sketch the steps 
here. From Eqns(3.17) and (4.1), we must evaluate ti. - 1 = 2dln((3/2*)H2/l~l)/dln61a (since 
k = Ho at horizon crossing). If we use the slow roll approximation for 4 and If, we have 

Mm2 n,(k) .e 1- - 
1+ sin2(&/2f) 

8*f2 1 - sin2(&/2f)[1 + (Mpr2/16?rf2)] 1 ’ (4.3) 

Here &. is the value of the scalar field at which k = Ho, and we have taken the positive sign for the 
potential (l.l), as in Sec. III. The scalar field reaches the value & roughly Nl(k) E N(&, &, f) 
e-folds before the end of inflation, where N(&, &, f) is 
As a result [Cf. Eq.(3.7)], we find 

gi ven by Eq.(3.6) with 41 replaced by 4s. 

sh2(‘S+k/2f) = [1+ ($$)I-‘exp [-3 N,(k)] . 

When this expression is substituted into Hq.(4.3), Eq.(4.2) is obtained. (Here, we have approxi- 
mated the ‘end of iuSation’ as the end of the slow-roll epoch, as in Eq.(3.5). If we instead took the 
end of inflation to be the time when the scalar field kinetic energy grows to the value $’ = V and 
approximated 6 by the slow roll result, the factors of a above would become m; since this 
factor is multiplied by the exponential suppression factor exp[-(M~,/8sf*)Nr(k)] in Eq.(4.2), 
this difference is negligible.) 

De&ring kend to be the wavenumber that equals (Ha).& at the end of inflation, and using 
the f=t that N&l = In(H(~k)k,,d/H(~,,d)k), 
is given by 

we find that the relation between Nl(k) and k 

=-NI(k)+;h(l+(-$)-i (l-e+~Ndk$) 

Thus between the current Rubble length k-’ 
scale, k-’ 

N 3000 h-‘Mpc and the galactic structure length 
N 0.5 h-‘Mpc, the range which encompasses all of the large scale structure observations, 

Nr(k) only changes by about 10. Since Nl(k) only enters the exponentially suppressed terms in 
Eq.(4.2), the index n, is quite constant at1 - (Mpi2/8rf2) over observable scales. 

2) Exponential Potential Inflation 

Although we view natural inSation as the best motivated model for obtaining power law 
indices below unity, other possibilities for getting n,(k) significantly different from unity have 
been widely discussed in the literature. Power law inflation [38,39] (in which the scale factor 
grows as a large power p of the time, a 0: t P, instead of quasi-exponentially) is the simplest 
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example of a model which predicts power law spectra. It is realized with au exponential potential 
of form V = V,exp[- m c$/Mp,], and has 

The deceleration parameter of the universe, q = -&i/o2 is g = -(l-p-‘) for power law inflation. 
In order to have a viable model of inflation, the universe must pass from acceleration, p < 0, to 
deceleration, 2 > 0, so that it can reheat; hence it is essential that p evolves, with inllation ending 
when p falls below unity. Thus, although power law inflation models are instructive since they are 
analytically simple, the exponential part of the potential can only be valid over a limited range of 
the evolution. Indeed, it is often convenier$ to characterize potentials that are not exponentials 
by au index p de&red by fi = HM,r/]4], w c re hi h d uces to the p in the exponential potential 
for that case. However, in these models, structure on observable scales may be generated in a 
regime where p varies with k rather than being constant. Even so, power law approximations are 
often locally valid, even when rather drastic potential surfaces are adopted to ‘design’ spectra. 
Some examples of cases where n. changes considerably over the observable window of large scale 
structure are given, for example, in [40,11]. 

3) Extended Inflation 

Extended inflation also leads to a power law form over a wide band in k-space [41]. In ex- 
tended inflation, a Braus-Dicke field, whose inverse is au effective Newton gravitational ‘constant’, 
is introduced as well as an intlaton. The analysis of [41] showed that the power law index can be 
simply expressed in terms of the Brans-Dicke parameter w (the coefficient of the kinetic term of 
the Brans-Dicke field), 

8 
7l.=l-- 

2w+3 
2w-1’ P= -. 4 

As far as density fluctuations are concerned, the model just mimics a power law inflation one 
described in Section IV.A.2 above. Indeed, the fluctuation spectrum is most easily computed in a 
conformally-transformed reference frame, where a new field defined as the log of the Braus-Dicke 
field experiences an exponential potential with p as given in Eq.(4.5) [41]; using Eq. (4.4), one 
then obtains rz6 as given in Eq. (4.5). In most versions of the theory, a value of w 5 18 - 25 is 
needed to avoid au excessive CMBR anisotropy due to large bubbles; thus, the spectrum deviates 
from scale invariant, with n. 5 0.77-0.84. At the same time, it is also necessary that the effective 
value of w must have evolved to a high number (> 500) by now in order to satisfy solar system 
tests. This can be arranged by, e.g., giving the Brans-Dicke field a xnass or by other means, but 
at the cost of complicating the model. 

4) Chaotic Inflation 

References [40] and [ll] probed the question of how much deviation from scale-invariance 
could be produced in various models in the waveband that corresponds to observable large-scale 
structure; their main conclusion was that the deviations must be small. We illustrate the level of 
breaking of scale invariance expected for the popular chaotic infiation models. We assume power 
law potentials of the form V(b) = X.M,14(~/Mp1)2”/(2~), where the power v is usually taken to 
be 1 or 2. A characteristic of such potentials is that the range of values of 6 which correspond 
to all of the large scale structure that we observe is actually remarkably small. For example, 
for v = 2, the region of the potential curve that corresponds to all of the structure between the 
scale of galaxies and the scales up to our current Rubble length is just 4Mpl 5 4 s 4.4Mpl 
(111. Consequently, the Hubble parameter does not evolve by a large factor over the large scale 
structure region and we therefore expect near scale invariance. Although this is usually quoted 
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in the form of a logarithmic correction to the C-spectrum, a power law approximation is quite 
accurate. Following exactly the same prescription used to evaluate Eq.(4.2), we have 

v+l 
ndk) = 1 - Nr(k) _ ; . 

For waves the size of our current Hubble length we have the familiar NI(k) - 60, hence n, 2: 0.95 
forv=2andn a 
is given by 

z 0.97 for Y = 1 (massive scalar field case). The relation between Nl(k) and k 

b(k)=-Nr(k)+(;)In(l+~) , (4.7) 

where kend is the wavenumber that equals Ha’at the end of inflation. Thus, over the range from 
our Hubble radius down to the galaxy scale, n, decreases by only about 0.01. 

B. Implications for Large-Scale Structure 

We have discussed various inflationary models (natural, power law, extended, and chaotic), 
which give rise to density perturbation spectra of the form l&l2 N k”., where n, < 1. We now 
turn to theii implications for large scale structure. 

1) Galaxy and Cluster Clustering 

Ideally, if one knew the precise specifications of the inflaton potential, then the amplitude of 
,. density perturbations generated during inllation would be fixed. In the absence of this knowledge, 

one normalizes the amplitude to observations of large-scale structure today. In this way, one can 
use the observations to restrict the parameters in the potential and thus in the underlying particle 
physics. We normalize the amplitude of the density perturbation spectra by setting the rms fluc- 
tuation in the mass distribution within spheres of radius Bh-‘Mpc, nP,s I ((6M/M)2)~g,-,Mpc, 
to be 0s. The ms fluctuation in galaxy counts on this scale in the CfA survey is unity. The 
quantity be E CT;’ IS sometimes called the ‘biasing’ factor, as discussed below. Roughly, if bs e 1, 
galaxies would be clustered like the nmss distribution, while if bs > 1, galaxies would be more 
strongly clustered than the mass. For standard CDM models with n5 = 1, 0s was thought to lie 
in the range 0.4 - 1.2 before the recent COBE measurement. 

b Fig.3a, we show the evolved power spectra of the linear CDM density fluctuations. To 
obtain Fig.3a, we have taken a primordial density spectmm in the msss density of the form 
16k(t;)12 0: k”., with n. in the range -1 to 1, and evolved it forward in time to the present day 
using a transfer function T(k), 16k(t,)(2 = p(k)16k(ti)12. For the CDM transfer function, we 
use the fitting formula given in Appendix G of BBKS [42]; this formula is highly accurate in 
the Rg + 0 limit, but should be somewhat modified for the RB N 0.05 values more appropriate 
from nucleosynthesis. The actual quantity plotted in the Figure is doz/dh k = k3(~6~(to)~2)/2rr2 
= Ppk3/2a2 in units of os, as a function of wavenumber k. The spectra are plotted in this way to 
provide a measure of the contribution of a band around the given wavenumber to the overall ms 
density fluctuations. The ordinate is approximately equal to (1 + z,l(k))/os, where z,l(k) is the 
redshift at which the ms fluctuations in the band become nonlinear. Notice that there is a peak 
in the CDM spectrum for n, < 1. This indicates that there is a characteristic scale, roughly at 
the peak of the spectrum, associated with the first objects that form [43]. A potential problem 
with these models is immediately apparent from Fig.3(a): the redshift of galaxy formation is an 
increasing function of n,. Thus, for nb much smaller than the scale invariant value n. = I, the 
model may encounter grave difficulties in explaining why there are quasars at .z N 5. We discuss 
this point more fully below. 

To relate such perturbations in the mass density in the linear regime of growth to the actual 
clustering of galaxies, one must generally do N-body simulations. However, on large scales, the 
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waves evolve in au essentially linear fashion; there is an excellent approximation which relates the 
power spectrum in the msss density to the power spectra of galaxies and galaxy clusters (if they 
arise from any function of the Gaussian process through which perturbations arose). This relation 
is au extension [44] of the theory which identifies galaxies and clusters with appropriately selected 
peaks of the initial density field [42, 451. For scales large compared with the local processes that 
define these objects and large enough that the waves are evolving in the linear regime, the power 
spectra for galaxies and clusters are linearly proportional to the mars density power spectrum; 
the proportionality constants define ‘biasing factors’, bs for galaxies and b, for clusters (Cf. Sec. 
III.C.1): 

or. eauivalentlv. 

P,(k) = +‘p(W, P,(k) = b:P,(k), 

do2 do= do2 
B=b2d 2 = b2 .%- 
dlnk ‘dhk ’ dhk “dhk (4.8) 

In Figure 3b, we show a blow-up of a portion of Fig.3a; 3b focuses on the region of k-space in 3a 
probed by large scale structure observations. [Note that in Fig.3b the ordinate has been relabeled 
in terms of galaxy power spectra using Eq.(4.8); thus, the spectrum is in units of 6,as.l This 
figure compares the theoretical galaxy spectra described in the previous paragraph with large 
scale clustering data from the QDOT and UC Berkeley IRAS surveys and the APM survey. In 
the conventional BBKS peaks approach to biasing [42], we would have b, = l/us, which is why 
orl, the inverse of au amplitude measure, is often referred to as a biasing factor (e.g., in Sec. 
III). In general, b, will differ from galaxy type to galaxy type and there is no clear reason why we 
should suppose that b, = 0;‘; nonetheless, it is rather remarkable that this assumption appears 
to give the correct amplitude for galaxy clustering. However, we note that the slight differences 
in the power spectrum levels for the 3 surveys could be simply explained with slightly differing 
b,‘s. To compare with the data in the nonlinear regime of the spectrum, k-’ 5 50s h-‘Mpc, 
N-body computations are needed. However, just from the linear regime it ~would appear that 
spectral indices n, in the range o-O.6 are much preferred over the scale invariant value of unity. 
(This point would appear even more dramatic had we forced the models to agree with the data 
at the 8 h-’ Mpc normalization scale.) 

Probably the most reliable indication of excess large scale power is the angular correlation 
function of galaxies, wsg(0), inferred from deep photometric surveys. Figure 4 compares the- 
oretical predictions of was(B) for various primordial power law spectra with observations from 
the APM survey. Although the angular correlation function suffers from having only two- rather 
than three-dimensional information, it gains enormously since angular surveys currently involve 
a few million galaxies, while three-dimensional (redshift) surveys are still limited to samples of 
several thousand galaxies. Two groups have now independently catalogued the galaxies of the 
Southern Sky and have derived wss(0)‘s in agreement with each other. A Northern Sky survey 
is also in basic agreement. To compare with these data, Bond and Couchman [44] showed that 
the theoretically predicted angular correlation function at large angles can be evaluated using the 
linear power spectrum for galaxies, although nonlinear effects substantially modify the estimates 
at small angles; they also showed how to evaluate the angular correlation function directly from 
the power spectrum. We applied these techniques to the power spectra of Figure 3b to compare 
wss(t7) as we vary n, with the APM results in Figure 4. The dots denote the APM data for various 
magnitude intervals, scaled bzk to the depth of the Lick survey [46]. The spread of points is 
considered to provide a rough indicator of the error level. Although there is a certain amount 
of vertical freedom in fitting the theory to the data, from the overall scale bgog, it is clear that 
0 5 n, 5 0.4 is required if we are to take the spread of dots as an error estimate. It was this 
graph that led to the conclusion given in Bond [47] that this wss the allowed range. However, 
estimates for various corrections to the APM catalogue such as those from plate errors and vari- 
able absorption by Galactic dust may revise wuss(0) downward slightly, and the hatched region is 
now expected to be allowed by the data [46]. Th us, for this paper, we consider the allowed range 
to be 0 5 n, 5 0.6. We note that this fit has been done with a CDM spectrum with h=0.5 and 
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a, = 
well. 

0. If we can contemplate h ss low as 0.4 or GB as large as 0.1, then n, z 0.7 is feasible as 

The high degree of clustering of clusters has been a puzzle since the early 1980’s. Observations 
[48] indicated that the correlation function of rich clusters was enhanced by a factor of about 11-16 
over the correlation function of galaxies, if one assumed the same power law behavior for both 
correlation functions. The sample from which most of the estimates of clustering were derived 
was the Abell catalogue, which has been criticized on a number of grounds. The main problem 
seems to be the projection effect: clusters at different redshifts superimpose upon one another 
and lead to the impression that the clusters are more massive than they truly are. Recently two 
redshift surveys of clusters identified using the Southern Sky galaxy surveys estimate correlations 
about half as large as the original values; these surveys have shown that they are not as subject 
to contamination by projection effects. [The possibility also exists that these new surveys are 
probing clusters less rich than the older observations.] These new values are roughly compatible 
with what is expected if one uses the power spectra suggested by the galaxy clustering data 
[49] as shown above. Provided we are in the linear regime, Eq.(4.8) shows that the ratio of the 
cluster-cluster correlation function to the galaxy-galaxy correlation function should be given by 
(b,/b,)2. A rough estimate for this enhancement factor can be obtained using the methods of 
[45] for a peak model of clusters; just from the abundance of clusters, one can determine that the 
combination (b, - 1)~ z 2.1. Since (be/b,)* N (2.1+ a~)2/(b,a~)2, and taking b, = or’, we find 
that the enhancement factor ranges from 6 to 10 ss os ranges from 0.5 to 1. Thus, if the new 
cluster correlation functions prove to be valid, they can also be explained with the same range of 
n, as the wss data indicates. 

2) Constraints from Microwave Background Anisotropies 

We now determine the range of os ss a function of rz* allowed by the COBE observations of 
microwave background anisotropy with the Differential Microwave Radiometer experiment [37]. 
The DMR team have presented data for: a) or(lOO), the rms fluctuations on the scale of 10”; 
b) u$,(=~, the sum of the squares of the components of the quadrupole moment tensor; and c) 
estimates of the correlation function with the dipole and quadrupole contributions removed. Here, 
we divide their results by the background temperature of 2.736K in order to obtain dimensionless 
quantities in units of AT/T. 

The fwhm of the DMR beam (7’) is su5ciently large that it is quite accurate to assume for 
the adiabatic fluctuations of interest here that the microwave background auisotropies arise from 
curvature fluctuations experienced by the photons as they travel out of the gravitational potential 
wells at the surface of last scattering to the present (the Sachs-Wolfe effect). If we assume that 
the universe is matter dominated from photon decoupling to the present, the variance Cc of the 
multipole coefficient at,,, in the spherical harmonic expansion of the radiation pattern (see e.g., 
ref. [SO]), is given by . ..~ - 

cc = (Iacm12) = $i’dLnk -$ j;(kq) , (4.9a) 

where j, is a spherical Bessel function and 7s is the comoving distance to the last scattering 
surface, 70 u 2H;’ z 6000 h-‘Mpc. The comoving wavenumber k is referred to current length 
units. The gravitational potential power spectrum is related to that for the density by 

do;/dln k = ((3/2)H;k-2)2du;/dln k . (4.96) 

Although we used Eq.(4.9a) directly to evaluate the temperature power spectrum CC, for power 
law spectra on the large scales that COBE probes, there is a simple expression in terms of Gamma 
functions [50] and the quadrupole power Cs: 

cc = c2 rp+ ~]I?(@+] 
r[l+ qQ[@p] ’ 
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for I 2 2. III terms of CC, the rms value expected in each multipole for COBE is 

o& = yet Fj , 
where 7< is a filter appropriate to their beam, and is approximated by a Gaussiau 

Ft = exp[-o.5(! + o.5)2/(&,,r + 0.5)2] , edmr = 19 , 

where e&r corresponds to 7’ fwhm. 

a) The strongest result to use for estimating the amplitude os is provided by or(lOO), which 
the COBE team determined by evaluating the intrinsic sky dispersion after further smoothing 
their data with a 7O fihm Gaussian filter. To compare with this, we calculate the average value 
that our theoretical model predicts for this, 

.&lo”) = c Jr+;, . (4.12) 
t 

The extra filtering by 7: brings the total smoothing up to a total of 10”. Since the realization of 
the Universe that we observe involves a specific set of multipole coefficients drawn from (Gaussian) 
distributions with variance CC, there will be a theoretical dispersion in the values of &loo), what 
the COBE team refers to as ‘cosmic variance’. For a$(lOO), we have 

W%~‘Vl*) = 2 -7 & [%+t]2 

An excellent fit to our calculation of Eqs.(4.12,4.13) (using 4.9a, 4.9b, and 4.11) is 

OT(lOO) = 0.93 x 10-s a* e*.ss(r-“.) [l l 0.1s 0 420~Il.)] (4.14) 

(Since the error in Eq. (4.13) is for the square, a$(lO’), there is actually a slight asymmetry 
between the upper and lower error bars for ar(10”); we have included this asymmetry iu Figure 
5.) Eq.(4.14) is to be compared with the DMR result, with its ‘1 sigma’ error, 

[dlOO)]dmr = 1.085 x 1O-5 [I f 0.1691 (4.15) 

(These errors should be slightly enhanced since the detected large scale anisotropy can lead to 
bigger fluctuations in ~(10~) than one would get solely using single pixel errors, as the DMR team 
did. This appears to be a sufficiently small correction that it can be ignored.) The combined 
theoretical and experimental error is therefore about 20% for nb = 1, rising slightly for lower 
values, hence 

0s = 1.17e-2s3(‘-“*) [l f 0.21 . (4.16) 

The central value for os as a function of n, with error bars is shown by the solid lines in Figure 
5. In particular, for nS ,$ 0.6, the DMR result requires os 5 0.5 (or a biasing factor bs 2 2). 
However, we caution that this value is for the GB = 0 limit. With the value RB m 0.06 favoured 
by primordial nucleosynthesis, the theoretical prediction for or(10’) rises by about 15% and the 
value of os obtained by comparison with COBE data drops by this amount. 

b) The quadrupole determination by the DMR team is not nearly as restrictive, because the 
cosmic variance as well ss the DMR error bars are quite large. Integrating Eq.(4.9a) over all 
k > 10e4 h-‘Mpc for Cs, we obtain 

or,(z2 = 0.46 x 1O-5 os s?*.‘~(~-“*) [l rt 0.31 , (4.17) 
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to be compared with 
[~T,f=2]dmt = 0.475 x 10-J [I f 0.311 ; (4.18) 

hence 
as e 1.02e-2.g4(‘-“.) [l f 0.461 (4.19) 

(again, we have ignored the asymmetry on the cosmic variance errors). As for o~(lO~), small 
values of os are required for n, s 0.6. We tind that Eq. (4.16) is more restrictive than Eq. (4.19). 

c) One can also use the correlation function data for given n. to determine the allowed range 
for cs. The correlation function (with quadrupole removed) and its cosmic variance are given by 
1501 

c(e) = c Pf(COS e) & (4.204) 
c-2 

([ACWl*) = 2 g & [p,(cos 0) &] * . (4.20b) 

There are also correlations from angle to angle, so a matrix is more appropriate. As well, one 
should restrict the region of correlation function estimation to that actually used by the DMR 
team, which involved a cut in Galactic lattitude. This will increase the theoretical variance. In 
Figure 6, we compare our theoretical correlation functions, including their errors derived from 
Eq.(4.20), for the n, = 1 (Fig. 6a) and n. = 0.4 (Fig. 6b) cases with the DMR correlation 
function given in ref. 1371. We have fixed the amplitude of the theory curves by requiring that 
they give the DMR ~(10~) = 1.09 x 10-s. If we vary this amplitude for fixed n,, then the theory 

- will ceaSe to agree with the data. Using the error bars that the DMR team give, and calculating x2 
for the model fits to the data assuming the errors are independent and Gaussian (which they are 
not), we have constructed au allowed range for as which basically agrees with that derived from 
~~(10~)~ but with slightly larger errors. A more precise treatment that takes into account the 
correlation in the variances of the theory C(6) and the intluence of the extra correlation over pixel 
noise on the data C(0) error bars is needed to precisely pin down the allowed range. However, 
we are encouraged by the general agreement between limits derived from or(lO”), C(0) and the 
quadrupole. The DMR team derive the constraint n, = 1.1 f 0.5 from the correlation function 
data. Although it can be seen from Figure 6 that there is a slight preference for the n, = 1 case 
compared with the n, = 0.4 case, we do not consider that the n, = 0.4 csse can be ruled out by 
these data alone. 

3) Large-scale Streaming Velocities 

There is another type of data that directly probes the amplitude of the mass density fluc- 
tuations as opposed to the fluctuations in galaxy or cluster number densities, namely large 
scale streaming velocities. From optical surveys, Bertscbinger et al. [51] estimated the three- 
dimensional velocity dispersions of galaxies within spheres of radius 40 h-‘Mpc and 60 h-‘Mpc 
after the data had been smoothed with a Gaussian f&w of 12 h-‘Mpc, 

0,(40) = 388 [I f 0.171 km s-l ; ~“(60) = 327 [I ho.251 km s-l (4.21) 

These data should be compared with the rms 3D velocity dispersions for power law CDM models 
(with errors calculated from the variance ([Auk]*)): 

,, Y (40) = 3000s ,1.oe(1-“.) [I+-:;;] km s-l ; ~“(60) = 238&.1g(1--n.) 1+.35 km s-l [ -.srl . (4.22) 

The fits are good for 0 5 n, 5 1. Although we do not regard these bulk flow estimates to be on 
as fhm a foundation as the DMR measurement of o~(lO~), it is interesting to note that the range 
suggested for os by the velocity data is similar, 

0s e 1.29e-res(‘-“.) [l+:;;] , (4.23) 
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provided n, is not very far from unity. Eq.(4.23) can be combined with Eq.(4.16) from ~~(10”) 
to yield a preferred value for n8 of 1.07 (and os = 1.4!), and a ‘2 sigma’ lower bound of n, = 0.72. 
Using the 60 h-‘Mpc ov-estimate gives a similar result. This constraint is so restrictive because 
the dramatic decrease in os with decreasing n. from ~~(10“) more than offsets the increased 
velocity due to the enhanced large scale power. 

4) The Epoch of Structure Formation and Other Tests 

Given os and the spectral index n. we can consider when structures of various types formed 
in the Universe. In Figure 7, we plot the range in linear rms density fluctuations up(M) = 
((AA~/LV)~) as a function of mass scale M allowed by Eq.(4.16). We actually calculate the rms 
fluctuations smoothed on a ‘top hat’ filtering scale &a which is related to the mass by M cz 
lO’*~*(Rr~/ h-‘Mpc)3. The range in RTR around Rg = O.Sh-‘Mpc corresponds to the filtering 
appropriate for galaxy formation (top hat msss 10 ll.s&,). The up(M) shown are evaluated at 
the current epoch if one extrapolates their growth by linear theory. This means that the nns 
fluctuations on the scale R, reach nonlinearity at a redshift somewhat above 

1 + z,l(R,) = cp(Rp) cz 6.208 e--(I-“‘I z 7.2e-3.63(1-“s) [l CIZ 0.21 , (4.24) 

where we have used Eq.(4.16) for os. Galaxies represent a much smaller fraction of space than 
that in typical fluctuations, but there is a lag between nonlinearity and complete collapse. These 
effects tend to cancel each other so Eq.(4.24) gives a lirst reasonable, although somewhat low, 
estimate of the redshift of galaxy formation. 

A better estimate of the redshift of galaxy formation is obtained in the following way. We 
take the observed luminosity function for galaxies [52] and assign an average mass-tolight ratio 
(M/L) for galaxies with luminosities above L. We then have, approximately, for the mass fraction 
in objects with luminosity greater than L, 

. . 
-’ 

i-i(> L) e O.O35exp(-L/L.)[(M/L)/(SOh)]R , 

where L. is a fitting parameter that gives the typical luminosity for a bright galaxy. The cor- 
responding mass is M = 6 x lO”h-*[(M/L)/(SOh)] L/L,. Therefore, the fraction of the mass 
in L. galaxies for the models we are considering is about a percent. Now consider the fraction 
of the mass in the Universe in collapsed objects with mass above 3 x 10”Mo; if we choose 50h 
for (M/L) and (M/L), this corresponds to the mass above L,/4, and the expression for a(> L) 
above indicates that 2.7% of the msss should be in such objects. We thus determine the redshift 
at which the Press-Schechter mass function [53] for these models would predict that 2.7% of the 
maSS in the Universe is in collapsed,objects with maSs above 3 x 1O”Ma. The corresponding 
value for this redshift is just 30% higher than Eq.(4.24) and provides a better estimate of when 
pervasive galaxy formation would have occurred, 

(1 + zgf)ps = 8.10~ e+-**) z=s 9.5e-3.63(‘-“*) [l f 0.21 . (4.25) 

The power 3.63 is so large that even if we err on the conservative side by using Eq.(4.25) rather 
than Eq.(4.24) and take the upper limit, we obtain relatively strong limits on n,: 

n. 2 0.63 , if zsf > 2 ; n, 2 0.71 , if zsf > 3 (4.26) 

A more careful analysis of star formation history would be required to improve upon these limits, 
but they illustrate that the amplitude factors allowed by the DMR data lead to strong limits on 
the spectral index to have galaxy formation occur early enough. Note that these bounds on n, 
are similar to those derived from the streaming velocities. 
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A more powerful analysis of when objects of various masses form is provided by the hi- 
erarchical peaks method [54, 551, which identifies virialized potential wells with patches of the 
Universe centred on peaks of the density field that have undergone collapse, but solves the ‘cloud- 
in-cloud problem’ inherent in the original BBKS peak method [42] by merging small scale peak 
substructures into the dominant peaks that contain them. A mass function for dark matter halos 
at redshift z, n(M, z)dM, as Well as detailed information about the spatial distribution of the 
halos, can be calculated. The objects found with this method have been shown to agree well 
with groups found in N-body calculations. Curiously, the mass function agrees reasonably well 
with that derived using the Press-Schechter approach [53], especially at the high mass end. This 
gives us some confidence in the validity of the Eq.(4.26), n, > 0.63, constraint. However, the 
Press-Schechter mass function has no strong theoretical justification [56] and cannot deal with 
the spatial distribution of objects. 

Since the total dark matter mass in galaxies is not directly measured, the mass function 
n(M) is of limited diagnostic use. On the other hand, the depth of galaxy and cluster potential 
wells can be inferred from their internal velocity dispersion v. Therefore, in Figure 8 we show 
the number density of objects with velocity dispersion in excess of v, n(> u, z), for a variety of 
redshifts. The n, = 1 CDM model with us = 0.7 has roughly the right number of v = 200km s-i 
halos at z > 3 to be a viable model of galaxy formation, and the number of clusters with 3D virial 
velocity above 1500 km s-l roughly corresponds to the number of rich Abell clusters. Increasing 
og for this model, as is suggested by ,the DMR data, might result in an excess of clusters with 
high velocity dispersions and thus high X-ray temperatures that may already be excluded by the 
X-ray data [55]. However, current indications from gravitational lensing observations in clusters 
[57] are that clusters exist with velocities in excess of v = 2000km s-i at t 2 0.2, and a z 
cluster observed with the X-ray satellite Giiga has an X-ray temperature of 13 keV [SS], Gii 
translates into a v - 259Okm 8-l dispersion. It is also possible that cluster X-ray temperatures 
are below the values one would infer from the dark matter potential. Thus it may turn out that 
0s - 1 will be preferred over 0.7 as the data improves. On the other hand, it is evident that 
cluster velocity dispersion estimates are easily contaminated by projection effects that always give 
overestimates[59], so the lack of v - 15OOkm s-l clusters in the os = 0.5, n. = 0.6 model cannot 
at present be used to exclude it. Thus, although it is universally agreed that the abundance of 
rich clusters as a function of velocity dispersion will be one of the most powerful measures of os, 
better data and extensive theoretical comparisons with the X-ray and optical data are required 
to test how strongly nd is constrained. The b&c conclusion of the more complete analysis of 
ref.[55] is that, while one may argue that low amplitude models are not excluded by the velocity 
or temperature data, it seems quite unlikely that the’errors in the X-ray flux and luminosity data, 
both for nearby and distant (L - 0.2) clusters, are so large ss to allow these models to survive; 
explicitly, the rzd = 0.6 CDM model with os 5 0.5 is ruled out [55]. 

What even more strongly rules out the n. = 0.6 model, in agreement with the analytic 
argument constraining II. using .zsf given above, is the lack of high redshift activity, in particular 
the paucity of halos with dispersion in excess of 2OOkm s-i even as late as I = 2. These are the 
sites of bright galaxy formation. There are some interesting differences that appear at high z even 
with the modest change in slope from n, = 1 to 0.8, with as lixed: e.g., there would be an order of 
magnitude more 2) = 100 km s-l ‘dwarf’ galaxies at e = 10 in the n, = 1 model than in the case of 
nb = 0.8. It has been argued [60] that only those dwarf galaxies with velocities above this number 
will survive the supernova explosions that occur when galaxies assemble themselves. Having some 
old cores of stable objects is probably a good thing rather than a bad thing, since they could be 
the birthplaces of quasars, but because of uncertainties in modelling the gas dynamical behaviour 
of forming galaxies and of the intergalactic medium one cannot be sutliciently detitive about 
the high z consequences of a theory to select one model over the other at this stage. 

Another test which has been used to argue that os s 0.6 and which therefore favours n, < I 
models is the velocity dispersion of pairs of galaxies over separations of order a Mpc [61]. In the 
early N-body simulations of n, = 1, os = 1 CDM models, the pair velocity dispersion of dark 
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matter halos on these scales was found to be much higher than the velocities of galaxies inferred 
from redshift surveys. However, Carlberg and Couchman [62] computed an nd = 1 CDM model 
in which the relative velocity of galaxies was much less t&xn that for the dark matter, an effect 
termed ‘velocity bias’. Coincidently, they chose Q = 1.17, the value suggested by DMR. Although 
how effective this velocity biasing can have been at lowering the pair velocities is a matter of much 
debate, smaller n. will obviously help to ease the problem. 

Experimental upper limits on smaIl and intermediate angle anisotropies in the microwave 
background can also be used to constrain the index n,, but require detailed computations along 
the lines of those given in ref. [SO] and we shall not undertake them here. We note however that 
the pre-COBE limits on anisotropy were already strong enough to place constraints of nb 2 0.6 
for 08 = 1 and n, 2 0.3 for (18 = 0.5 [47] at the 90% confidence level, and the constraints from 
an earlier DMR limit [63] also gave similar values. (For other previous discussions of power law 
CDM spectra, see [38,39,67].) 

5) The Role of Gravitational Wave Modes 

Stimulated by the DMR results, other groups have been independently considering inflation- 
inspired power law spectra [68, 691. Davis et al. [69] have pointed out that, although gravitational 
wave (GW) modes are generally small for nearly scale invariant spectra [70], for n, < 1 these 
modes can be important. The work of these authors amplifies upon the work of Abbott and Wise 
[71]. Whenever the GW mode power spectrum is comparable to the scalar density fluctuation 
spectrum computed above, the constraints on the allowed spectral index from COBE become even 
more restrictive. As we will show, gravitational wave modes are negligible for the cake of natural 
inflation, but are significant for power law and extended inflation models. 

We first outline a calculation of the gravitational wave mode power spectrum, and compare 
it to the scalar density perturbation spectrum. During inflation, the same zero point quantum 
fluctuation phenomenon which leads to the ix&ton density perturbations also leads to statistically 
independent gravitational wave perturbations. If h+ and h, are the two linear gravitational w+ye 
perturbations, then the gravitational modes vi = Mplhi/&, where i = +, X, behave just 
like single massless scalar field degrees of freedom as far as fluctuation generation is concerned. 
Each of the fields ‘pi of comoving wavenumber k has a power spectrum P:!*(k) equal to the 
Hawking temperature H/(2?r) when k = Ha, just as the inflaton fluctuations do, except that 
the gravitational perturbations are not amplified during subsequent evolution. With the factor 
given above, we therefore have for the total gravitational wave power, P,?& s [Ph+ + P,,,]'/2 
= &%Mpl-1H/(2~). Th e ratio of the gravitational wave power spectrum to the adiabatic 
metric perturbation power spectrum PC, at horizon crossing is therefore 

3 = JzdmdI 

c 
3Mp1H ’ 

where the fi comes from the 2 independent GW polarizations that can be generated. Using the 
WKB values at horizon crossing usually gives accurate estimates of &nal fluctuation amplitude 
IllI. 

For natural inflation, using the slow roll approximation, we have 

$=y ($$)li*,[(l+~)exp[$$N~(k)] -1]-1’* (4.27) 
c 

Thus the gravity waves are exponentially suppressed relative to the adiabatic scalar fluctuations 
of the in&ton over the observable large scale structure waveband. In particular, for f 5 Alp,, 
this ratio is less than 0.04 for modes with wavelength equal to the current Hubble radius. 
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On the other hand, for power law in&ion with an exponential potential, the ratio is 

g-2fi 2&i 
p’l2 

c 
-G=3 [l+&.y’*. (4.28) 

Thus, for small n,, the power in GW modes becomes almost comparable to the power in scalar 
density fluctuations. 

The amplitude of gravitational waves modes decays by directional dispersion as the modes 
re-enter the horizon, just as waves in any relativistic collisionless matter do [43]; adiabatic fluctu- 
ations, on the other hand, maintain a constant gravitational potential. Before the gravitational 
wave structure disperses, however, it influences the microwave background through the Sachs- 
Wolfe effect. A number of authors have calculated the magnitude of this effect [70,71]. We denote 
the ratio of GW tensor to scalar contributions to the radiation field multipole moments a=~ by 
AL. Abbott and Wise [71] show that this ratio is not very sensitive to the multipole moment L. 
Davis et al. [69] use the results of [70,71] to obtain the ratio A2 for the quadrupole moment, 

(4.29) 

To estimate the more restrictive constraints on the power law index when one includes the 
effects of GW modes for power law in&ion, we shall assume AL N A2 for all L; substituting Eq. 
(4.28) into Eq.(4.29), we iind 

A*E3.7[1+&]-1’r . (4.30) 

To include the effects of GW perturbations, the theoretical predictions for ~(10”) given in 
Eq.(4.14) should be multiplied by [l + AZ]‘/*. Thus, the allowed range of og as a function of 
n. is lowered substantially. The new allowed range of parameter space is plotted in Fig. 5. For 
example, for n. = 0.6, one can see that the maximum allowed value of Q drops by a factor 
of 1.8. This makes the already strong constraints we have derived significantly stronger. The 
n,-constraint we derived by requiring that galaxies form early enough in the theory, nb > 0.63 
for zgf > 2, changes to n, > 0.76 for power law inflation; similarly, the bound n, > 0.71 from 
the requirement zof > 3 now becomes nd > 0.82. Also, the ‘2 sigma’ streaming velocity limit of 
nI > 0.72 increases to ns > 0.89. 

For the chaotic inflation potentials used above, we have 

- - 3 [Nl(k) + ;]-l” , 
PA/$ _ 24 
p’l2 

Aa = 2.634 [Nl(k) + ;] -I” ; (4.31) 
C 

hence gravity waves diminish og by only 11% for a d4 potential, and by 5.5% for a @ potential. 
Slightly higher values for A2 (and therefore lower values for aa) are obtained if we use a power law 
inflation formula with n. = ,0.95 and 0.97 for the 4’ and $* models, respectively. Motivated by 
COBE, various authors have been looking again at the gravitational wave contribution in these 
conventional in&ion models [69,72]. 

It is clear from this discussion that if one could unearth the gravity wave component of 
anisotropy from the adiabatic component, it would allow a strong discrimination among models. 
In particular, natural inflation predicts only a negligible contribution from GW modes. 
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6) Discussion 

Since our n. 2 0.6 limit comes from a variety of arguments, we believe it is quite robust. 
Thus, unless the errors in the analysis of the large scale clustering observations (which require n. < 
0.6 with standard CDM, see Section IV.B.l) are larger than currently estimated, a tluctuation 
spectrum with broken scale invariance (i.e., n. < 1) that has a slowly changing spectral index 
over the range k-’ N 10 - lo4 Mpc cannot be the sole solution to the extra power dilemma that 
the CDM model faces. However, the allowed values of nd 2 0.7 can help to ease the requirements 
on some of the extra power 6xes proposed in the literature (e.g., [45]); for example, nd = 0.7 with 
CDM and h = 0.4 or Rg = 0.1 marginally fits the observations. 

Motivated by the DMR results and the many prospects for broken scale invariance in itiation, 
Cen et al. [68] have very recently undertaken combined hydrodynamical and N-body calculations 
of CDM models with n* = 0.7 and have independently come to a number of the conclusions we 
have about such models, namely that they help but do not fully solve the large scale structure 
dilemma. Some related pre-COBE results on the implications of power-law spectra with CDM 
were obtained by Vittorio, et al. [38] (in particular, on CMBR anisotropy and large-scale flows). 
In addition, independently of our work, Liddle, et al. (391 came to similar conclusions about 
constraints from the APM data on power-law models. 

Finally, our limit on n. can be translated into constraints on the parameters of inflation 
models that give rise to power law spectra. For example, it gives a very strong constraint on the 
effective value of w, the Brans-Dicke parameter which arises in extended inflation models. When 
the effect of GW tensor waves is included, the tot > 2 constraint, nL. 2 0.76, becomes w 2 17; this 
lower limit comes close to reaching the largest allowed value of w for successful extended inflation 
1731, w s 25, in most versions of this theory. Indeed, a closer examination [74] of the upper bound 
on w, which arises from the requirement that large bubbles do not produce an excessive microwave 
anisotropy, suggests that in fact w < 18 is required if the dark matter is cold. Combined with our 
lower bound on w, this limit would leave little room for most extended inflation scenarios. For 
natural infiation, from Eqn.(4.2), the constraint n. > 0.63 translates into a lower bound for f..of 
0.33Mp1. This is comparable to the constraint from reheating, Eq.(3.37). 

V. CONCLUSIONS 

We have studied an inflation scenario inspired by particle physics models with weakly self- 
coupled (pseudo-)scalars such as the axion. With the requisite mws scales, which can emerge 
dynamically for plausible choices of gauge groups, PNGB inflation appears to be robust in the 
sense that it arises in the simplest class of models, with a potential of the form (1.1). We have 
shown how these models can arise in a variety of theoretical settings, and indeed that superstring 
models already in the literature come very close to providing the desired mass parameters for 
natural inllation. Although the tendency of higher dimension operators on PNGBs arising from 
wormhole effects, for example, would be to increase A, we discussed quite plausible ways in which 
the upward movement can be exponentially suppressed, so our model retains its naturalness. We 
numerically and analytically studied the cosmological dynamics of the inflaton field, and derived 
several constraints on the two-dimensional parameter space (f, A). The allowed band of parameter 
space includes models which have more relative fluctuation power on large lengthscales than the 
standard scale-invariant spectrum. 

We have studied in depth the consequences of power law initial fluctuation spectra for large- 
scale structure and the microwave background anisotropy. We find that the large-scale galaxy 
angular correlation function wss(0) observed in the APM survey is consistent with power law 
initial spectra and standard CDM for n s s 0.6; if h = 0.4 or RB = 0.1, then n, BS large 
as 0.7 would be acceptable. However, the COBE results require a rather small perturbation 
amplitude for these models, os 5 0.5 (bs 2 2) for n, ,$ 0.6. For this range of n,, this makes 
the epoch of galaxy formation uncomfortably recent and predicts large-scale flows of relatively 
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small amplitude. Turning this argument around, we have combined the COBE results with the 
requirement of sufficiently early galaxy formation (z,t > 2) and large-scale flows of the inferred 
amplitude to find the constraint nd 2 0.6 - 0.7. For natural inflation, this implies f 2 0.3Mp1, 
virtually the same bound as we get from the requirement of sufficient reheating and consonant with 
the requirement that the probability of su5cient inflation be O(1). We have also found that the 
effects of gravitational wave modes on the microwave anisotropy are negligible for natural tiation, 
but can be.important for power law and extended inflation. For the latter models, inclusion of 
gravitational waves in the COBE signal yields an even tighter constraint on the spectral index, 
n, 2 0.76 - 0.89. For many brands of extended inflation, the Bran+Dicke parameter is restricted 
to an extremely narrow range. 

Although the simple expedient of reducing nb does not, by itself, solve all the large scale 
structure dilemmas for the CDM model, it can be combined with other ways to explain the extra 
large scale power [45], for example, by introducing into the CDM model a neutrino with a mass of 
a few eV, a nonzero cosmological constant (Mpr*A/8rh = 0.2 with CDM fits for n, = l), a smaller 
Hubble constant (h N 0.4), a larger baryon abundance, or by simply supposing that galaxies are 
distributed on large scales somewhat differently than the mass so that the linear biasing assump- 
tion of Eq.(4.8) is invalid. We conclude that inflation with pseud*Nambu-Goldstone bosom offen 
an attractive model for generating curvature fluctuations whose gravitational instability can lead 
to all of the cosmological structure we observe around us. 
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APPENDIX: APPROXIMATION OF INTEGRALS 

In this Appendix, we demonstrate the validity of the results presented in 5III.C on the a 
posteriori probability of inflation. The main difficulty is that the simple logarithmic form (Eq. 
3.11) for the number of e-foldings as a function of yl = &/f does not hold for large y1 (i.e., for 
y1 1 1). We should thus write the integral I (see Eq. 3.31) in the form 

J 
1 

/ 
1 

I= dyle3Ae--3BIn”l + ,jyle3.“b) 

= ‘“^((i,‘“-’ _ 1) 11’ ,jyle3N(v’), 
(AlI 

In SIILC, we argued that when 38 > 1, the integral can be approximated by the lirst term above, 

W) 

We now calculate the relative error suffered in making this approximation. We first note that the 
number of e-foldings N(yl) is a strictly decreasing function of the starting value yl. In particular, 

N(YI) I N(1) = A VYl E [1,4. 

8We thus obtain a bound on the second integral in Eq. [Al], 

(A31 

/ 

* 
dyle3N(“‘) 2 e3A(r - 1). 

1 

This contribution to the error is always positive, whereas the other contribution [namely -e3A/(3B- 
l)] is always negative. The total error E is therefore bounded from above by 

The total error is also bounded from below by the second (negative) term alone, so we obtain the 
relation 

-1 2 E(3E - l)e-3A 2 3B(?r - 1) - x, 

and hence the relative error & = E/I is bounded by 

w 

& 5 P-1 x max{l, 3B(a - 1) - 7r). (A71 

This error is alwar sufEciently small for the cases of interest. For example, for f x Mpl, 
3B u 48?r(f/Mp,) a 48n, then c 5 ylm”2 u 0.6, and hence & _< 2 x 10T31. For the other end 
of the mass range of interest (i.e., for f near fc = 0.06Mp1), let 3B - 1 = 6 where 6 is a small 
positive number. In this regime yyz N 10mBo and hence & 5 10-606. The error is thus completely 
negligible until 6 becomes smaller than l/60 or so, that is, until f is very close to fc. 
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FIGURE CAPTIONS 

Figure 1: Plot of various field values and parameters vs. f/Mm. The upper curves show that 
our estimate &t/f (eq.3.5) for the value of the field at the end of the SR epoch (dotted) is very 
close to our numerical result &d/f for when tiation ends (solid). The middle (dashed) curve 
shows log(4y”/f), the largest initial value of the field consistent with 60 e-folds of inflation. The 
lower (dotted) curve shows the density perturbation constraint (3.23) on the scale A [plotted as 
log(h/Mpl)], assuming the bias parameter b, = 1. 

Figure 2: Results of the numerical integration of the scalar and gravitational equations of motion. 
The number of inflation e-folds N(&) of the scale factor is shown as a function of the initial value 
of the scalar field, $1, for different values of the fundamental mass scale, f/M=, = 0.05, 0.07, 0.1, 
0.2. and 0.5. 

Figure 3(a): Theoretical power spectra [da;/dlnk]‘l’/ue for CDM models with variable spectral 
indices r(* are plotted against comoving wavenumber k (in units appropriate to current length). 
The power spectra are derived assuming linear dynamics (appropriate for k-’ 2 50s h-‘Mpc and 
large scale linear biasing). There is progressively more large scale power as n. decreases through 
the values nd = 1, 0.6, 0.4, 0, -0.4, and -1 shown in the figure. The lines under the labels (whose 
vertical placements are arbitrary) indicate approximate regions in k-space that various probes of 
structure are sensitive to: microwave background anisotropy experiments of large angles (COBE, 
[37]) and of intermediate angles (e.g., SPole is a lo experiment [64]); clustering observations for 
galaxies in the APM Galaxy Survey (wss, [46]), galaxies in the QDOT redshift survey [SS], and 
clusters (&) (481; and large scale streaming velocities (LSSV) 1511. The hatched region denotes the 
range that the power spectrum must pass through to explain the APM angular galaxy correlation 
function data [46]. 

Figure 3(b): A blow-up of the portion of Fig. 3(a) that focuses on the range of wavelengths 
probed by observations of large-scale clustering. The ordinate has been relabelled so that the 
spectra are in units of b,os. The hatched region is the APM region of 3(a), while the points 
denote the power spectra estimated from the QDOT redsbift survey [65] (triangular points) and 
the IRAS 1.2 Jamky survey [SS] (square points). Different biasing factors for the (slightly) 
different types of galaxies probed by the APM, QDOT and 1.2 Jy surveys could explain the 
diEerences in these results. There are indications that b, = 0.8~;’ is needed for the 1.2 Jy 
galaxies [66], while bs = or’ describes the APM survey well. This difference in b, is enough to 
bring the required power spectra for the different observations into agreement; in particular, the 
n, = 0.2-0.6 range is also preferred by the 1.2 Jy data if b, = 0.8ug1, while the n, = 1 curve falls 
below the data error bars. 

Figure 4: The models of Fig. 3(b) (with n, = 1, 0.8, 0.6, 0.4,..., -1) are compared with the 
angular correlation function ~~~(0) determined from the APM Galaxy Survey [46] scaled to the 
depth of the Lick catalogue, at which lo corresponds to a physical scale of N 5h-‘Mpc (dots). 
No nonlinear corrections were applied to the theoretical power spectra, but for angular scales 
above N 1’ and for amplitude factors 0s 5 1, the linear approximation is accurate (441. The 
theoretical curves are in units of (bsos)*. The straight line gives the angular correlation that 
would result if the behavior of the spatial correlation function observed over distances r 5 lOh-’ 
Mpc, { N r-=‘, were extended to large separations. Vertical hatchmarks indicate the allowed 
region once corrections for systematic errors in the observations are included. The data therefore 
suggest 0 5 nd s 0.6 is needed for the CDM model if biasing is linear on large scales. 

Figure 5: Solid curves indicate the allowed range of the amplitude parameter 0s as a function 
of the power law slope n, for a standard CDM model (in the limit that Rs = 0); this is the range 
allowed by comparison of ~~(10“) (the ns fluctuations on 10’) in COBE’s DMR experiment with 

42 



the theoretical predictions. The central curve indicates the best fit value, while the two adjacent 
lines give ‘1 sigma’ error bars. Both the theoretical variance and the quoted experimental error 
are included in the error bars, which are in total about f20%. The values of 0s drop by a further 
N 15% when Rg N 0.06 is used rather than the value zero used here. The correlation function data 
of Fig.6 give rise to similar constraints. The two horizontal solid lines (whose vertical placement 
is arbitrary) illustrate the range in n, suggested by the APM angular correlation function data 
and the ‘1 sigma error bars’ on n. derived using the correlation function by the DMR team. 
The horizontal dotted lines encompass the range of values of es that have been advocated for 
the nd = 1 CDM model by differ&t. workers, e.g., os = 0.4, 0.55, 0.65, and 1.2 in [61,44,54,62] 
rapectively. The dashed curves give the allowed range for os(nS) when gravitational wave modes 
are included for power law (and extended) inflation. For natural inflation, the contribution of 
GW modes to the anisotropy is negligible, and the deviation from the solid curves is infinitesimal. 

Figure 6: Comparison of the DMR 53A+B x SOA+B cross correlation function C(0) (where the 
quadrupole contribution has been removed) [37] with the theoretical predictions for (a) II. = I 
and (b) n. = 0.4 spectra. The theoretical curves have been normalized (i.e., the amplitudes os 
set) by requiring the angular power spectrum to reproduce the mu fluctuations on IO”. The 
central curves indicate the pm8 values predicted by theory, while the outer two curves indicate 
the ‘cosmic’ variance. Clearly, although the data is somewhat better fit by the n, = 1 rather than 
the n. = 0.4 model, one cannot strongly distinguish between the 2 models solely on the basis of 
the shape of C(0); in particular, the spectral index n, = 0.4 cannot be ruled out by these data 
alone. 

Figure 7: The linear rms fluctuations up(M) averaged over spherical regions of radius RT~ are 
plotted as a function of msss scale M = 10’2.4(RTa/h-‘Mpc)3 Ma, for CDM models with n. = 
0.4, 0.6, 0.8, and 1 (with n. increasing as one moves vertically up the figure). The error bars show 
the 1 sigma range in spectrum normalization a4 a result of DMR and cosmic variance errors in 
~(10’). Although Fig.3(a) shows that n. < 1 spectra have more power on large scales and less 
on small scales than n. = 1 models with the same crs, when as(n,) determined from COBE is 
used, the amplitude for nS < 1 is less on all mass scales. The extreme problems with the n, = 0.4 
model and the marginality of the 7~~ = 0.6 model in terms of both large-scale structure and a 
s&iciently early epoch of galaxy formation are evident from this graph alone. 

Figure 8: In (a), we show the number density of collapsed objects with 3D virial velocity in 
excess of v for the CDM model with spectral index n. = 0.8 and for the value of the amplitude 
parameter 0s = 0.7 (indicated by the DMR ~(10“) data for this model). The densities are 
shown as a fwiktion of redshift z, with L decreasing as one moves to the right in the figure. The 
velocities in the hierarchical peaks method 1551 used for this computation could be larger by an 
amount given by the error bar labelled by ‘v range’; these error bars are explicitly put on the 
I = 0 curve. The number densities shown should be compared with the abundances indicated 
by the horizontal lines and velocity dispersions indicated by the downward arrows: for ‘bright’ 
galaxies, w lo-‘( h-‘Mpc)-3 with v m 220 km s-l, for rich clusters, N 6 x 10m6 ( h-’ M~c)-~ with 
v u 15OOkm s-l, and for at least one object between us and redshift 2, w 10mQ( h-1Mpc)-3 with 
v N 25OOkm s-l, according to the Ginga X-ray satellite team [58]. In (b), we choose the DMR 
1 sigma upper bound 0s = 0.5 for n, = 0.6; even so, the number of ‘bright galaxy’ halos is too 
small by z = 2. In (c), we plot the densities for n. = 1, using the DMR 2 sigma lower bound 
0s = 0.7 for the amplitude, to facilitate comparison with (a). The number densities of model (c) 
accord reasonably well with the hierarchy of objects in the Universe. There is little to distinguish 
between the n, = 1 and nb = 0.8 models with the same Q. To explicitly show this, we also 
plot with light solid curves the tails of the z = 0 abundances for cases (a) and (b). The third 
light curve, also for z = 0 (the highest curve at large v), shows the effect of increasing os to I 
for the n. = 1 model, closer to the number indicated by DMR. Although this may lead to too 
many clusters with higher X-ray temperatures than observed [55], os = 1 does help to explain 
the Ginga event. 
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